Skip to main content
Log in

Dual production of amylase and δ-endotoxin by Bacillus thuringiensis subsp. kurstaki during biphasic fermentation

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

This study examined the efficacy of a Bacillus thuringiensis (Bt) strain in producing amylase (EC 3.2.1.1) as a by-product without affecting its unique ability for producing δ-endotoxin, thus to establish a cultivation strategy for the dual production and recovery of both δ-endotoxin and amylase from the fermented medium with an industrial perspective. LB medium was individually supplemented (5 to 100%, wt/vol) with flour from six naturally available starchy stored foods (banana, Bengal gram, jack seed, potato, taro or tapioca); after initial fermentation (12 h), the supernatant in the medium obtained by centrifugation (1000 g, 10 min) was used for harvesting amylase and the resultant pellet was further incubated aseptically for the production of endospores and δ-endotoxin by solid-state fermentation. Maximum crude amylase activity (867 U/gram dry substrate, 12 h) was observed in potato flour-supplemented medium (10% wt/vol, 12 h), while the activity in LB control was only 4.36 U/mL. SDS-PAGE profile of the crude (supernatant), as well as partially purified (40–60% (NH4)2SO4 fractionation) amylase showed that its apparent molecular mass was 51 kDa, which was further confirmed by native PAGE. The harvest of industrially significant extracellular amylase (probably α-amylase) produced as a byproduct during early growth phase would boost the economics of the Bt-based bio-industry engaged in δ-endotoxin production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnepf, E., Crickmore, N., Van, R.J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., and Dean, D.H., Bacillus thuringiensis and its pesticidal crystal proteins, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 775–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Soberon, M., Gill, S.S., and Bravo, A., Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells?, Cell. Mol. Life. Sci., 2009, vol. 66, pp. 1337–1349.

    Article  CAS  PubMed  Google Scholar 

  3. Li, E. and Yousten, A., Metalloproteases from Bacillus thuringiensis, Appl. Microbiol., 1975, vol. 30, pp. 354–361.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kuppusamy, K. and Balaraman, K., Extra cellular hydrolytic enzyme secretion in Bacillus thuringiensis H14 & B. sphaericus and their significance in media design, Indian. J. Med. Res., 1990, vol. 91, pp. 149–150.

    CAS  PubMed  Google Scholar 

  5. Vu, K.D., Tyagi, R.D., Valéro, J.R., and Surampalli, R.Y., Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate, Bioprocess. Biosyst. Eng., 2010, vol. 33, pp. 691–700.

    Article  CAS  PubMed  Google Scholar 

  6. Thamthiankul, S., Suan-Ngay, S., Tantimavanich, S., and Panbangred, W., Chitinase from Bacillus thuringiensis subsp. pakistani, Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 395–401.

    Article  CAS  PubMed  Google Scholar 

  7. Bryant, J.E., Commercial production and formulation of Bacillus thuringiensis, Agric Ecosys. Environ., 1994, vol. 49, pp. 31–35.

    Article  Google Scholar 

  8. Benjamin, S. and Pandey, A., Optimization of liquid media for lipase production by Candida rugosa, Biores. Technol., 1996, vol. 55, pp. 167–170.

    Article  CAS  Google Scholar 

  9. Arikan, B., Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate isolate A3–15, Biores. Technol., 2008, vol. 99, pp. 3071–3076.

    Article  CAS  Google Scholar 

  10. Yezza, A., Tyagi, R.D., Valero, J.R., and Surampalli, R.Y., Production of Bacillus thuringiensis-based biopesticides in batch and fed batch cultures using wastewater sludge as a raw material, J. Chem. Technol. Biotechnol., 2005, vol. 80, pp. 502–510.

    Article  CAS  Google Scholar 

  11. Poopathi, S. and Archana, B., Production of Bacillus thuringiensis subsp. israelensis from agro-based product (concob), Curr. Sci., 2011, vol. 101, pp. 1009–1010.

    CAS  Google Scholar 

  12. Benjamin, S. and Pandey, A., Candida rugosa lipases: Molecular biology and versatility in biotechnology, Yeast, 1998, vol. 14, pp. 1069–1087.

    Article  CAS  PubMed  Google Scholar 

  13. Pandey, A., Soccol, C.R., and Soccol, V.T., Biopotential of immobilized amylases, Indian J. Microbiol., 2000, vol. 40, pp. 1–14.

    Google Scholar 

  14. Pandey, A., Solid-state fermentation, Biochem. Eng. J., 2003, vol. 13, pp. 81–84.

    Article  CAS  Google Scholar 

  15. Mussatto, S.I., Ballesteros, L.F., Martins, S., and Teixeira, J.A., Use of agro-industrial wastes in solid-state fermentation processes, in Industrial Waste, Show, K.Y. and Guo, X., Eds., Croatia: InTech, 2012, pp. 121–140.

    Google Scholar 

  16. Benjamin, S., Smitha, R.B., Jisha, V.N., Pradeep, S., Sajith, S., Sreedevi, S., Priji, P., Unni, K.N., and Sarath Josh, M.K., A monograph on amylases from Bacillus spp., Adv. Biosci. Biotechnol., 2013, vol. 4, pp. 227–241. doi: 10.4236/abb.2013.42032

    Article  Google Scholar 

  17. Ezeji, T. and Bahl, H., Purification, characterization and synergistic action of phytate resistant alpha amylase and alpha glucosidase from Geobacillus thermodenitrificans HRO10, J. Biotechnol., 2006, vol. 125, pp. 27–38.

    Article  CAS  PubMed  Google Scholar 

  18. Laemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 277, pp. 680–685.

    Article  Google Scholar 

  19. Wisessing, A., Engkagul, A., Wongpiyasatid, A., and Chuwongkomon, K., Purification and characterization of C. maculatus α-amylase, Kasetsart. J. (Natural Science), 2008, vol. 42, pp. 240–244.

    Google Scholar 

  20. Konsula, Z. and Liakopoulou-Kyriakides, M., Hydrolysis of starches by the action of alpha amylase from Bacillus subtilis, Process. Biochem., 2004, vol. 39, pp. 1745–1749.

    Article  CAS  Google Scholar 

  21. Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, K.M., Sukumaran, R.K., and Pandey, A., Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens, Biores. Technol., 2008, vol. 99, pp. 4597–4602.

    Article  CAS  Google Scholar 

  22. Baysal, Z., Uyar, F., and Aytekin, C., Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water, Proc. Biochem., 2003, vol. 38, pp. 1665–1668.

    Article  CAS  Google Scholar 

  23. Shukla, J. and Kar, R., Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates, World J. Microbiol. Biotechnol., 2006, vol. 22, pp. 417–422.

    Article  CAS  Google Scholar 

  24. Demirkan, E.S., Mikami, B., Adachi, M., Higasa, T., and Utsumi, S., Alpha amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli, Proc. Biochem., 2005, vol. 40, pp. 2629–2646.

    Article  CAS  Google Scholar 

  25. Faber, C., Hobley, T.J., Mollerup, J., Thomas, O.R.T., and Kaasgaard, S.G., Study of the solubility of a modified Bacillus licheniformis α-amylase around the isoelectric point, J. Chem. Eng. Data, 2007, vol. 52, pp. 707–713.

    Article  CAS  Google Scholar 

  26. Bernhardsdotter, E.C.M.J., Ng, J.N., Garriott, O.K., and Pusey, M.L., Enzymic properties of an alkaline chelator resistant alpha amylase from an alkaliphilic Bacillus sp. isolate L 1711, Proc. Biochem., 2005, vol. 40, pp. 2401–2408.

    Article  CAS  Google Scholar 

  27. Liu, X.D. and Xu, Y., A novel raw starch digesting alpha amylase from a newly isolated Bacillus sp. YX-1: purification and characterization, Biores. Technol., 2008, vol. 99, pp. 4315–4320.

    Article  CAS  Google Scholar 

  28. Sarrafzadeh, M.H., Guiraud, J.P., Lagneau, C., Gaven, B., Carron, A., and Navarro, J., Growth, sporulation, δ-endotoxins synthesis, and toxicity during culture of Bacillus thuringiens H14, Curr. Microbiol., 2005, vol. 51, pp. 75–81.

    Article  CAS  PubMed  Google Scholar 

  29. Rajalekshmi, S. and Shethna, Y.I., Spore and crystal formation in Bacillus thuringiensis var. thuringiensis during growth in cystine and cysteine, J. Biosci., 1980, vol. 2, pp. 321–328.

    Article  Google Scholar 

  30. Gitahy, P.M., de Souza, M.T., Monnerat, R.G., Arrigoni, E.B., and Baldani, J.I., A Brazilian Bacillus thuringiensis strain highly active to sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae), 2007, Braz. J. Microbiol., 2007, vol. 38, pp. 56–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Benjamin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smitha, R.B., Jisha, V.N., Sajith, S. et al. Dual production of amylase and δ-endotoxin by Bacillus thuringiensis subsp. kurstaki during biphasic fermentation. Microbiology 82, 794–800 (2013). https://doi.org/10.1134/S0026261714010147

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261714010147

Keywords

Navigation