• Letter
  • Open Access

Geometrical torque on magnetic moments coupled to a correlated antiferromagnet

Nicolas Lenzing, David Krüger, and Michael Potthoff
Phys. Rev. Research 5, L032012 – Published 21 July 2023

Abstract

The geometrical spin torque mediates an indirect interaction of magnetic moments, which are weakly exchange coupled to a system of itinerant electrons. It originates from a finite spin-Berry curvature and leads to a non-Hamiltonian magnetic-moment dynamics. We demonstrate that there is an unprecedentedly strong geometrical spin torque in the case of an electron system, where correlations cause antiferromagnetic long-range order. The key observation is that the anomalous torque is strongly boosted by low-energy magnon modes emerging in the two-electron spin-excitation spectrum due to spontaneous breaking of SU(2) spin-rotation symmetry. As long as single-electron excitations are gapped out, the effect is largely universal, i.e., essentially independent of the details of the electronic structure, but decisively dependent on the lattice dimension and spatial and spin anisotropies. Analogous to the reasoning that leads to the Mermin-Wagner theorem, there is a lower critical dimension at and below which the spin-Berry curvature diverges.

  • Figure
  • Figure
  • Figure
  • Received 3 April 2023
  • Accepted 20 June 2023

DOI:https://doi.org/10.1103/PhysRevResearch.5.L032012

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

Nicolas Lenzing1, David Krüger1, and Michael Potthoff1,2

  • 1University of Hamburg, Department of Physics, Notkestraße 9-11, 22607 Hamburg, Germany
  • 2The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 5, Iss. 3 — July - September 2023

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×