Skip to main content
Log in

Controlled cell patterning on bioactive surfaces with special wettability

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields. Despite extensive progress, the ability to control the cell-surface interaction is complicated by the complexity in the physiochemical features of bioactive surfaces. In particular, the manifestation of special wettability rendered by the combination of surface roughness and surface chemistry further enriches the cell-surface interaction. Herein we investigated the cell adhesion behaviors of Circulating Tumor Cells (CTCs) on topographically patterned but chemically homogeneous surfaces. Harnessing the distinctive cell adhesion on surfaces with different topography, we further explored the feasibility of controlled cell patterning using periodic lattices of alternative topographies. We envision that our method provides a designer’s toolbox to manage the extracellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barron J A, Wu P, Ladouceur H D, Ringeisen B R. Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomedical Microdevices, 2004, 6, 139–147.

    Article  Google Scholar 

  2. Díaz-Mochón J J, Tourniaire G, Bradley M. Microarray platforms for enzymatic and cell-based assays. Chemical Society Reviews, 2007, 36, 449–457.

    Article  Google Scholar 

  3. Woodruff K, Fidalgo L M, Gobaa S, Lutolf M P, Maerkl S J. Live mammalian cell arrays. Nature Methods, 2013, 10, 550–552.

    Article  Google Scholar 

  4. Kuss S, Polcari D, Geissler M, Brassard D, Mauzeroll J. Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9249–9254.

    Article  Google Scholar 

  5. Tan J L, Tien J, Pirone D M, Gray D S, Bhadriraju K, Chen C S. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1484–1489.

    Article  Google Scholar 

  6. Qin Y P, Chen J, Bi Y, Xu X H, Zhou H, Gao J M, Hu Y, Zhao Y L, Chai Z F. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomaterialia, 2015, 17, 201–209.

    Article  Google Scholar 

  7. Gao H, Bi Y, Chen J, Peng L R, Wen K K, Ji P, Ren W F, Li X Q, Zhang N, Gao J M, Chai Z F, Hu Y. Near-infrared light-triggered switchable nanoparticles for targeted chemo/photothermal cancer therapy. ACS Applied Materials & Interfaces, 2016, 8, 15103–15112.

    Article  Google Scholar 

  8. Chen G C, Xie Y S, Peltier R, Lei H P, Wang P, Chen J, Hu Y, Wang F, Yao X, Sun H Y. Peptide-decorated gold nanoparticles as functional nano-capping agent of mesoporous silica container for targeting drug delivery. ACS Applied Materials & Interfaces, 2016, 8, 11204–11209.

    Article  Google Scholar 

  9. Zhou H, Bi Y, Gao H, Chen P, Chen J, Hu Y. Reduction sensitive micellar magnetic nanoparticles for cancer targeted chemotherapy. Nanomedicine-Nanotechnology Biology and Medicine, 2016, 12, 547–547.

    Article  Google Scholar 

  10. Qiao Y, An J, Ma L. Single cell array based assay for in vitro genotoxicity study of nanomaterials. Analytical Chemistry, 2013, 85, 4107–4112.

    Article  Google Scholar 

  11. Heng L, Hu R, Chen S, Li M, Jiang L, Tang B Z. Ordered honeycomb structural interfaces for anticancer cells growth. Langmuir, 2013, 29, 14947–14953.

    Article  Google Scholar 

  12. Giepmans B N G. The fluorescent toolbox for assessing protein location and function. Science, 2006, 312, 217–224.

    Article  Google Scholar 

  13. Fernandes T G, Diogo M M, Clark D S, Dordick J S, Cabral J M S. High-throughput cellular microarray platforms: Applications in drug discovery, toxicology and stem cell research. Trends in Biotechnology, 2009, 27, 342–349.

    Article  Google Scholar 

  14. Wang Y, Shah P, Phillips C, Sims C E, Allbritton N L. Trapping cells on a stretchable microwell array for single-cell analysis. Analytical and Bioanalytical Chemistry, 2011, 402, 1065–1072.

    Article  Google Scholar 

  15. Liu X L, Chen L, Liu H L, Yang G, Zhang P C, Han D, Wang S T, Jiang L. Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Materials, 2013, 5, e63.

    Article  Google Scholar 

  16. Zhang P, Chen L, Xu T, Liu H, Liu X, Meng J, Yang G, Jiang L, Wang S. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Advanced Materials, 2013, 25, 3566–3570.

    Article  Google Scholar 

  17. Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L. Hydrophobic interactionmediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Advanced Materials, 2013, 25, 922–927.

    Article  Google Scholar 

  18. Liu H L, Li Y Y, Sun K, Fan J B, Zhang P C, Meng J X, Wang S T, Jiang L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. Journal of the American Chemical Society, 2013, 135, 7603–7609.

    Article  Google Scholar 

  19. Liu X, Wang S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chemical Society Reviews, 2014, 43, 2385–2401.

    Article  Google Scholar 

  20. Li Y Y, Lu Q H, Liu H L, Wang J F, Zhang P C, Liang H G, Jiang L, Wang S T. Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Advanced Materials, 2015, 27, 6848–6854.

    Article  Google Scholar 

  21. Li G N, Yang G, Zhang P C, Li Y Y, Meng J X, Liu H L, Wang S T. Rapid cell patterning induced by differential topography on silica nanofractal substrates. Small, 2015, 11, 5642–5646.

    Article  Google Scholar 

  22. Zhang F, Jiang Y, Liu X, Meng J, Zhang P, Liu H, Yang G, Li G, Jiang L, Wan L J, Hu J S, Wang S. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Letters, 2016, 16, 766–772.

    Article  Google Scholar 

  23. Huang X W, Yue W Q, Liu D D, Yue J B, Li J Q, Sun D, Yang M, S Wang Z K. Monitoring the intracellular calcium response to a dynamic hypertonic environment. Scientific Reports, 2016, 6, 23591.

    Article  Google Scholar 

  24. Deutsch M, Deutsch A, Shirihai O, Hurevich I, Afrimzon E, Shafran Y, Zurgil N. A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab on a Chip, 2006, 6, 995–1000.

    Article  Google Scholar 

  25. Wang X, Chen S, Kong M, Wang Z, Costa K D, Li R A, Sun D. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab on a Chip, 2011, 11, 3656–3662.

    Article  Google Scholar 

  26. Grier D G. A revolution in optical manipulation. Nature, 2003, 424, 810–816.

    Article  Google Scholar 

  27. Liu W, Dechev N, Foulds I G, Burke R, Parameswaran A, Park E J. A novel permalloy based magnetic single cell micro array. Lab on a Chip, 2009, 9, 2381–2390.

    Article  Google Scholar 

  28. Carlo D D, Wu L Y, Lee L P. Dynamic single cell culture array. Lab on a Chip, 2006, 6, 1445–1449.

    Article  Google Scholar 

  29. Taff B M, Voldman J. A scalable addressable positivedielectrophoretic cell-sorting array. Analytical Chemistry, 2005, 77, 7976–7983.

    Article  Google Scholar 

  30. Shi J, Ahmed D, Mao X, Lin S-C S, Lawit A, Huang T J. Acoustic tweezers: Patterning cells and microparticles using Standing Surface Acoustic Waves (SSAW). Lab on a Chip, 2009, 9, 2890–2895.

    Article  Google Scholar 

  31. Rozkiewicz D I, Kraan Y, Werten M W T, de Wolf F A, Subramaniam V, Ravoo B J, Reinhoudt D N. Covalent microcontact printing of proteins for cell patterning. Chemistry-A European Journal, 2006, 12, 6290–6297.

    Article  Google Scholar 

  32. Bearinger J, Dugan L, Wu L, Hill H, Christian A, Hubbell J. Chemical tethering of motile bacteria to silicon surfaces. BioTechniques, 2009, 46, 209–216.

    Article  Google Scholar 

  33. Jang K, Sato K, Mawatari K, Konno T, Ishihara K, Kitamori T. Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Biomaterials, 2009, 30, 1413–1420.

    Article  Google Scholar 

  34. Pan H-A, Hung Y-C, Su C-W, Tai S-M, Chen C-H, Ko F-H, Steve Huang G. A nanodot array modulates cell adhesion and induces an apoptosis-like abnormality in NIH-3Tcells. Nanoscale Research Letters, 2009, 4, 903–912.

    Article  Google Scholar 

  35. Zhu H, Stybayeva G, Silangcruz J, Yan J, Ramanculov E, Dandekar S, George M D, Revzin A. Detecting cytokine release from single T-cells. Analytical Chemistry, 2009, 81, 8150–8156.

    Article  Google Scholar 

  36. Wang Z, Chin S Y, Chin C D, Sarik J, Harper M, Justman J, Sia S K. Microfluidic CD4T-cell counting device using chemiluminescence-based detection. Analytical Chemistry, 2010, 82, 36–40.

    Article  Google Scholar 

  37. Qiao Y, Wang C, Su M, Ma L. Single cell DNA damage/repair assay using HaloChip. Analytical Chemistry, 2012, 84, 1112–1116.

    Article  Google Scholar 

  38. Hsiao S C, Liu H, Holstlaw T A, Liu C, Francis C Y, Francis M B. Real time assays for quantifying cytotoxicity with single cell resolution. PLOS ONE, 2013, 8, e66739.

    Article  Google Scholar 

  39. Chen W, Weng S, Zhang F, Allen S, Li X, Bao L, Lam R H W, Macoska J A, Merajver S D, Fu J. Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano, 2013, 7, 566–575.

    Article  Google Scholar 

  40. Dou X, Zhang D, Feng C, Jiang L. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion. ACS Nano, 2015, 9, 10664–10672.

    Article  Google Scholar 

  41. Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia, 2010, 6, 2711–2720.

    Article  Google Scholar 

  42. Yang G, Liu H, Liu X, Zhang P, Huang C, Xu T, Jiang L, Wang S. Underwater-transparent nanodendritic coatings for directly monitoring cancer cells. Advanced Healthcare Materials, 2013, 3, 332–337.

    Article  Google Scholar 

  43. Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L. Hydrophobic interactionmediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Advanced Materials, 2012, 25, 922–927.

    Article  Google Scholar 

  44. Chen W, Sun Y, Fu J. Microfabricated nanotopological surfaces for study of adhesion-dependent cell mechanosensitivity. Small, 2012, 9, 81–89.

    Article  Google Scholar 

  45. Kwak M, Han L, Chen J J, Fan R. Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small, 2015, 11, 5600–5610.

    Article  Google Scholar 

  46. Feng W, Li L, Ueda E, Li J, Heißler S, Welle A, Trapp O, Levkin P A. Surface patterning via thiol-yne click chemistry: An extremely fast and versatile approach to superhydrophilic-superhydrophobic micropatterns. Advanced Materials Interfaces, 2014, 1, 1400269.

    Article  Google Scholar 

  47. Wang L, Asghar W, Demirci U, Wan Y. Nanostructured substrates for isolation of circulating tumor cells. Nano Today, 2013, 8, 374–387.

    Article  Google Scholar 

  48. Chung S H, Son S J, Min J. The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates. Nanotechnology, 2010, 21, 125104.

    Article  Google Scholar 

  49. Lopacinska J M, Gradinaru C, Wierzbicki R, Kobler C, Schmidt M S, Madsen M T, Skolimowski M, Dufva M, Flyvbjerg H, Molhave K. Cell motility, morphology, viability and proliferation in response to nanotopography on silicon black. Nanoscale, 2012, 4, 3739–3745.

    Article  Google Scholar 

  50. Zhang P, Lin L, Zang D, Guo X, Liu M. Designing bioinspired anti-biofouling surfaces based on a superwettability strategy. Small, 2017, 13, 1503334.

    Article  Google Scholar 

  51. Kim D-J, Lee G, Kim G-S, Lee S-K. Statistical analysis of immuno-functionalized tumor-cell behaviors on nanopatterned substrates. Nanoscale Research Letters, 2012, 7, 637.

    Article  Google Scholar 

  52. Geyer F L, Ueda E, Liebel U, Grau N, Levkin P A. Superhydrophobic-superhydrophilic micropatterning: Towards genome-on-a-chip cell microarrays. Angewandte Chemie International Edition, 2011, 50, 8424–8427.

    Article  Google Scholar 

  53. Cristofanilli M, Hayes D F, Budd G T, Ellis M J, Stopeck A, Reuben J M, Doyle G V, Matera J, Allard W J, Miller M C, Fritsche H A, Hortobagyi G N, Terstappen L. Circulating tumor cells: A novel prognostic factor for newly diagnosed metastatic breast cancer. Journal of Clinical Oncology, 2005, 23, 1420–1430.

    Article  Google Scholar 

  54. Bailey S N, Ali S M, Carpenter A E, Higgins C O, Sabatini D M. Microarrays of lentiviruses for gene function screens in immortalized and primary cells. Nature Methods, 2006, 3, 117–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lufeng Che or Zuankai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Li, J., Sun, H. et al. Controlled cell patterning on bioactive surfaces with special wettability. J Bionic Eng 14, 440–447 (2017). https://doi.org/10.1016/S1672-6529(16)60409-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/S1672-6529(16)60409-2

Keywords

Navigation