Skip to main content
Log in

Test for conditional quantile change in GARCH models

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

In this study, we consider the problem of detecting a change point in the conditional quantile of GARCH models. The task is essential in risk management as the conditional quantile is utilized to calculate the value-at-risk (VaR) of asset prices. We propose the cumulative sum (CUSUM) tests based on the residuals and derive their limiting distributions under mild conditions. We also demonstrate the validity of the tests by conducting Monte Carlo simulations, followed by a real data analysis of the exchange rate between the US Dollar and Korean Won and the Korea composite stock price index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bai, J. (1993). On the partial sums of residuals in autoregressive and moving average models. Journal of Time Series Analysis, 14(3), 247–260.

    Article  MathSciNet  MATH  Google Scholar 

  • Berkes, I., Horváth, L., & Kokoszka, P. (2004). Testing for parameter constancy in GARCH(p, q) models. Statistics & Probability Letters, 70, 263–273.

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley, P. (1968). Convergence of probability measure. Wiley.

    MATH  Google Scholar 

  • Bloomfield, P., & Steiger, W. L. (1983). Least absolute deviations: theory, applications, and algorithms. Birkhäuser.

    MATH  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  • Bougerol, P., & Picard, N. (1992). Strict stationarity of generalized autoregressive processes. The Annals of Probability, 20, 1714–1730.

    Article  MathSciNet  MATH  Google Scholar 

  • Campbell, S. D. (2006). A review of backtesting and backtesting procedures. The Journal of Risk, 9, 1–17.

    Article  Google Scholar 

  • Chen, J., & Gupta, A. K. (2012). Parametric statistical change point analysis with applications to genetics, medicine, and finance. Wiley.

    Book  MATH  Google Scholar 

  • Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39, 841–862.

    Article  MathSciNet  Google Scholar 

  • Ciuperca, G. (2017). Real time change-point detection in a nonlinear quantile model. Sequential Analysis, 36(1), 87–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Csörgő, M., & Horváth, L. (1997). Limit theorems in change-point analysis. Wiley.

    MATH  Google Scholar 

  • de Pooter, M., & van Dijk, D. (2004). Testing for changes in volatility in heteroskedastic time series—A further examination. Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

  • Engle, R., & Manganelli, S. (2004). CAViaR: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22, 367–381.

    Article  MathSciNet  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50, 987–1007.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, L., Glynn, P. W., & Pelger, M. (2018). Change-point testing and estimation for risk measures in time series. arXiv preprint. arXiv:1809.02303.

  • Fitzenberger, B., Koenker, R., & Machado, J. (2013). Economic applications of quantile regression. Springer Science & Business Media.

    Google Scholar 

  • Gombay, E. (2008). Change detection in autoregressive time series. Journal of Multivariate Analysis, 99, 451–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., & Heyde, C. C. (2014). Martingale limit theory and its application. Academic Press.

    MATH  Google Scholar 

  • Inclán, C., & Tiao, G. C. (1994). Use of cumulative sums of squares for retrospective detection of changes of variance. Journal of the American Statistical Association, 89, 913–923.

    MathSciNet  MATH  Google Scholar 

  • Kim, M., & Lee, S. (2016). Nonlinear expectile regression with application to value-at-risk and expected shortfall estimation. Computational Statistics & Data Analysis, 94, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S., Cho, S., & Lee, S. (2000). On the cusum test for parameter changes in GARCH (1, 1) models. Communications in Statistics-Theory and Methods, 29(2), 445–462.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirch, C., & Kamgaing, J. T. (2012). Testing for parameter stability in nonlinear autoregressive models. Journal of Time Series Analysis, 33(3), 365–385.

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R., & Bassett, G., Jr. (1978). Regression quantiles. Econometrica: Journal of the Econometric Society, 46, 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R., & Zhao, Q. (1996). Conditional quantile estimation and inference for arch models. Econometric Theory, 12, 793–813.

    Article  MathSciNet  Google Scholar 

  • Koul, H. L. (2002). Weighted empirical processes in dynamic nonlinear models. Springer Science & Business Media.

    Book  MATH  Google Scholar 

  • Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3, 73–84.

    Article  Google Scholar 

  • Lee, S., Ha, J., Na, O., & Na, S. (2003). The CUSUM test for parameter change in time series models. Scandinavian Journal of Statistics, 30, 781–796.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., & Kim, M. (2017). On entropy test for conditionally heteroscedastic location-scale time series models. Entropy, 19(8), 388.

    Article  MathSciNet  Google Scholar 

  • Lee, S., & Noh, J. (2010). Value at risk forecasting based on quantile regression for GARCH models. The Korean Journal of Applied Statistics, 23, 669–681.

    Article  Google Scholar 

  • Lee, S., & Noh, J. (2013). Quantile regression estimator for GARCH models. Scandinavian Journal of Statistics, 40, 2–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Tokutsu, Y., & Maekawa, K. (2004). The cusum test for parameter change in regression models with ARCH errors. Journal of Japan Statistical Society, 34, 173–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., Wei, C.-Z., et al. (1999). On residual empirical processes of stochastic regression models with applications to time series. The Annals of Statistics, 27(1), 237–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Noh, J., & Lee, S. (2016). Quantile regression for location-scale time series models with conditional heteroscedasticity. Scandinavian Journal of Statistics, 43, 700–720.

    Article  MathSciNet  MATH  Google Scholar 

  • Oh, H., & Lee, S. (2018). On score vector- and residual-based CUSUM tests in ARMA-GARCH models. Statistical Methods & Applications, 27(3), 385–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Oh, H., & Lee, S. (2019a). Modified residual CUSUM test for location-scale time series models with heteroscedasticity. Annals of Institute of Statistical Mathematics, 71, 1059–1091.

    Article  MathSciNet  MATH  Google Scholar 

  • Oh, H., & Lee, S. (2019b). Parameter change test for location-scale time series models with heteroscedasticity based on bootstrap. Applied Stochastic Models in Business and Industry, 35(6), 1322–1343.

    Article  MathSciNet  Google Scholar 

  • Oka, T., & Qu, Z. (2011). Estimating structural changes in regression quantiles. Journal of Econometrics, 162(2), 248–267.

    Article  MathSciNet  MATH  Google Scholar 

  • Page, E. S. (1955). A test for a change in a parameter occurring at an unknown point. Biometrika, 42, 523–527.

    Article  MathSciNet  MATH  Google Scholar 

  • Qu, Z. (2008). Testing for structural change in regression quantiles. Journal of Econometrics, 146(1), 170–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Su, L., & Xiao, Z. (2008). Testing for parameter stability in quantile regression models. Statistics & Probability Letters, 78(16), 2768–2775.

    Article  MathSciNet  MATH  Google Scholar 

  • Weiss, A. (1991). Estimating nonlinear dynamic models using least absolute error estimation. Econometric Theory, 7, 46–68.

    Article  MathSciNet  Google Scholar 

  • Xiao, Z., & Koenker, R. (2009). Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models. Journal of the American Statistical Association, 104, 1696–1712.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, M., Wang, H. J., & Tang, Y. (2015). Sequential change point detection in linear quantile regression models. Statistics & Probability Letters, 100, 98–103.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the editor, an AE, and the two referees for their careful reading and valuable comments. This research is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (no. 2021R1A2C1004009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyeol Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We here provide a proof of Theorem 2.1 in Sect. 2. All necessary notations are introduced in Sect. 2.

Proof of Theorem 2.1

We first handle \({\hat{T}}_{n,1}\). Note that

$$\begin{aligned}&\frac{1}{\sqrt{n}}\max _{1\le k\le n}\left| \sum _{t=1}^k y_{t-1}^2\{ \psi _\tau (y_t-{\hat{q}}_t (\tau ))- \psi _\tau (y_t-q_t^0 (\tau ))\}\right. \\ &\qquad \left. -\frac{k}{n}\sum _{t=1}^n y_{t-1}^2\{\psi _\tau (y_t-{\hat{q}}_t (\tau ))- \psi _\tau (y_t-q_t^0 (\tau ))\}\right| \\ &\quad \le \frac{2}{\sqrt{n}}\max _{1\le k\le n}\left| \sum _{t=1}^k y_{t-1}^2\{ I(\epsilon _t \le {\hat{\xi }}{\hat{\sigma }}_t/\sigma _{t0}) -F({\hat{\xi }}{\hat{\sigma }}_t/\sigma _{t0} )+F(\xi _0 )-I(\epsilon _t \le \xi _0)\}\right| \\ &\qquad +\frac{1}{\sqrt{n}}\max _{1\le k\le n}\left| \sum _{t=1}^k y_{t-1}^2 ( F({\hat{\xi }}{\hat{\sigma }}_t/\sigma _{t0} )-F(\xi _0 ))\right. \\ &\qquad \left. -\frac{k}{n}\sum _{t=1}^n y_{t-1}^2 ( F({\hat{\xi }}{\hat{\sigma }}_t/\sigma _{t0} )-F(\xi _0 ))\right| {:}{=}A_n +B_n. \end{aligned}$$

Properly modifying the arguments used for analysing the asymptotic behavior of the sequential residual empirical process for ARMA and GARCH models (Bai, 1993; Koul, 2002; Lee & Kim, 2017; Lee et al., 1999), one can verify that \(A_n =o_P (1)\). Below we provide a condensed proof without going into great detail.

We put \(g_t (\vartheta ) {:}{=}\xi {\tilde{\sigma }}_t (\theta )/\sigma _{t0}-\xi _0\) and

$$\begin{aligned} I_k{:}{=} \frac{1}{\sqrt{n}}\sum _{t=1}^{k}y_{t-1}^2\Big \{I({\epsilon }_{t}\le \xi _0+g_t ({\hat{\vartheta }}))-F(\xi _0+g_t ({\hat{\vartheta }}))-F(\xi _0)+I(\epsilon _t\le \xi _0)\Big \}. \end{aligned}$$

For any \(\delta \in (0,1)\), there exists \(L>0\) such that \(P(\hat{\vartheta }_{n}\in {\mathcal{N}}_{L/\sqrt{n}})\ge 1-\delta\), where \({\mathcal{N}}_{L/\sqrt{n}}\) is a compact neighborhood of \(\vartheta _{0}\) with \(\|\vartheta -\vartheta _{0}\|\le L/\sqrt{n}\) for all \(\vartheta \in {\mathcal{N}}_{L/\sqrt{n}}\). For a positive real number \(\eta\), we partition \({\mathcal{N}}_{L/\sqrt{n}}\) into a finite number, say, \(N{:}{=}N(\eta )\) of subsets \(D_1,\ldots ,D_N\) with diameter less than \(\frac{\eta }{\sqrt{n}}\). We choose any points \(\vartheta _j\) in \(D_j\). Then, when \({\hat{\vartheta }}_n \in D_j\), we have

$$\begin{aligned} I({\epsilon }_{t}\le \xi _0+ g_t (\vartheta _j )+g_{tj}^{-})\le I({\epsilon }_{t}\le \xi _0+g_{t} ({\hat{\vartheta }}))\le I({\epsilon }_{t}\le \xi _0+g_t (\vartheta _j)+g_{tj}^+ (\vartheta )) \end{aligned}$$

with \(g_{tj}^{-}=\inf _{\vartheta \in D_j} g_t (\vartheta )-g_t (\vartheta _j)\) and \(g_{tj}^{+}=\sup _{\vartheta \in D_j} g_t (\vartheta )-g_t (\vartheta _j )\). Put

$$\begin{aligned} I_{kj}^+= & {} \frac{1}{\sqrt{n}}\sum _{t=1}^{k}y_{t-1}^2\Big \{I({\epsilon }_{t}\le \xi _0+g_t (\vartheta _j)+g_{tj}^+)-F(\xi _0+g_t (\vartheta _j)+g_{tj}^+)\\&-F(\xi _0)+I(\epsilon _t\le \xi _0)\Big \},\\ I_{kj}^-= & {} \frac{1}{\sqrt{n}}\sum _{t=1}^{k}y_{t-1}^2\Big \{I({\epsilon }_{t}\le \xi _0+g_t (\vartheta _j)+g_{tj}^-)-F(\xi _0+g_t (\vartheta _j)+g_{tj}^-)\\&-F(\xi _0)+I(\epsilon _t\le \xi _0)\Big \}. \end{aligned}$$

Then,

$$\begin{aligned} \max _{1\le k\le n} |I_k|\le \max _{1\le j\le N} \max _{1\le k\le n} |I_{kj}^+|+\max _{1\le j\le N} \max _{1\le k\le n} |I_{kj}^-|+R_n \end{aligned}$$
(8)

with

$$\begin{aligned} R_n= & {} \frac{1}{\sqrt{n}}\sum _{t=1}^{n}\max _{1\le j\le N} y_{t-1}^2 \sup _{\vartheta \in D_j}|F(\xi _0+g_t (\vartheta _j)+g_{tj}^+)-F(\xi _0+ g_t (\vartheta ))|\nonumber \\ &+\frac{1}{\sqrt{n}}\sum _{t=1}^{n}\max _{1\le j\le N} y_{t-1}^2\sup _{\vartheta \in D_j}| F(\xi _0+g_t (\vartheta _j)+g_{tj}^-)-F(\xi _0+ g_t (\vartheta ))|\nonumber \\ = & {} \eta O_P (1). \end{aligned}$$
(9)

Put

$$\begin{aligned} e_{tj}^+= & {} y_{t-1}^2\Big \{I({\epsilon }_{t}\le \xi _0+g_t (\vartheta _j)+g_{tj}^+)-F(\xi _0+g_t (\vartheta _j)+g_{tj}^+)-F(\xi _0)+I(\epsilon _t\le \xi _0)\Big \},\\ e_{tj}^-= & {} y_{t-1}^2\Big \{I({\epsilon }_{t}\le \xi _0+g_t (\vartheta _j)+g_{tj}^-)-F(\xi _0+g_t (\vartheta _j)+g_{tj}^-)-F(\xi _0)+I(\epsilon _t\le \xi _0)\Big \}, \end{aligned}$$

and \(S_{kj}^+=\sum _{t=1}^{k}e_{tj}^+\) and \(S_{kj}^-=\sum _{t=1}^{k}e_{tj}^-\) . Note that \(\{(S_{kj}^+, {\mathcal{F}}_t); k=1,\ldots , n\}\), where \({\mathcal{F}}_t=\sigma (\epsilon _t, \epsilon _{t-1},\ldots )\), forms an array of martingales. Then, for any \(\lambda >0\), using the sub-martingale inequality, we get

$$\begin{aligned}&P\Big (\max _{1\le j\le N}\max _{1\le k\le n} |I_{kj}^+|\ge \lambda \Big )\le P\Big (\max _{1\le j\le N}\frac{1}{\sqrt{n}}\max _{1\le k\le n} |S_{kj}^+|\ge \lambda \Big )\nonumber \\&\quad \le \sum _{j=1}^N P\Big (\max _{1\le k\le n}|S_{kj}^+|\ge \sqrt{n}\lambda \Big )\le \sum _{j=1}^N E S_{nj}^{+2p}/n^{p}\lambda ^{2p}. \end{aligned}$$
(10)

Furthermore, applying Rosenthal’s inequality (Hall & Heyde, 2014), we get

$$\begin{aligned} ES_{nj}^{+2p}\le C\left( E\left[ \sum _{t=1}^{n}E(e_{tj}^{+2}|{\mathcal{F}}_{t-1})\right] ^{p}+\sum _{t=1}^{n}E(e_{tn}^{+2p})\right) , \end{aligned}$$
(11)

for some \(C>0\). Using the mean value theorem and the fact that \(E\{y_{t-1}^4 |g_t (\vartheta _j)+g_{tj}^+|\}^{p} <\infty\), we can see that \(E\Big [\sum _{t=1}^{n}E(e_{tj}^{+2}|{\mathcal{F}}_{t-1})\Big ]^{p}=O (n^{p/2})\), so that since \(\sum _{t=1}^{n}E(e_{tj}^{+2p})= O(n)\), we have \(ES_{nj}^{+2p}=O(n^{p/2}+n )\) uniformly in j by (11). This together with (10) implies \(\max _{1\le j\le N}\max _{1\le k\le n} |I_{kj}^+|=o_P (1)\). Similarly, we can check that \(ES_{nj}^{-2p}=O(n^{p/2}+n )\) uniformly in j, so that

$$\begin{aligned} \max _{1\le j\le N}\max _{1\le k\le n} |I_{kj}^-|=o_P (1). \end{aligned}$$

Combining this, (8) and (9) with an arbitrarily small \(\eta\), we obtain \(A_n= o_P (1)\). Meanwhile, using Taylor’s theorem up to order 2 and the ergodicity of \(\{y_t\}\), one can easily verify that \(B_n =o_P (1)\). This with \({\hat{\tau }}_{1}^2=\tau _1^2+o_P (1)\) indicates that \({\hat{T}}_{n,1}- T_{n,1}=o_P (1)\), and thus, \({\hat{T}}_{n,1}\) weakly converges to \(\sup _{0\le s\le 1} | B^\circ (s)|\) due to (4).

Next, we deal with \({\hat{T}}_{n,2}\). Under the conditions of the Theorem 2.1, we first verify that (5) holds. Note that

$$\begin{aligned}&\max _{1\le k\le n}\left| \frac{1}{\sqrt{n}} \left| \sum _{t=1}^{k} {\hat{\delta }}_t^2 - \frac{k}{n}\sum _{t=1}^{n} {\hat{\delta }}_t^2 \right| - \frac{1}{\sqrt{n}} \left| \sum _{t=1}^{k} {\hat{\epsilon }}_t^2 - \frac{k}{n}\sum _{t=1}^{n} {\hat{\epsilon }}_t^2 \right| \right| \\ &\quad \le \frac{1}{\sqrt{n}}\max _{1\le k\le n} \left| \sum _{t=1}^{k} (\hat{\varvec{\phi }}^T \hat{\varvec{\epsilon }}_{t-1})^2 \right. \\ &\qquad -\left. \frac{k}{n}\sum _{t=1}^{n} (\hat{\varvec{\phi }}^T \hat{\varvec{\epsilon }}_{t-1})^2 \right| + \frac{2}{\sqrt{n}}\max _{1\le k\le n} \left| \sum _{t=1}^{k} {\hat{\epsilon }}_t \hat{\varvec{\phi }}^T \hat{\varvec{\epsilon }}_{t-1} - \frac{k}{n}\sum _{t=1}^{n} {\hat{\epsilon }}_t \hat{\varvec{\phi }}^T \hat{\varvec{\epsilon }}_{t-1} \right| \\ &\quad {:}{=} I_n + II_n, \end{aligned}$$

wherein

$$\begin{aligned} I_n \le&\frac{2}{n} \left( n \| \hat{\varvec{\phi }} \|^2 \right) \left( \frac{1}{n} \sum _{t=1}^{n} \| \hat{\varvec{\epsilon }}_{t-1}\|^2 \right) =o_P (1) \end{aligned}$$

because \({\hat{\sigma }}_t^2\ge 1\) for all t and

$$\begin{aligned} \frac{1}{n} \sum _{t=1}^{n} \|\hat{\varvec{\epsilon }}_{t-1}\|^2 \le \frac{1}{n} \sum _{j=1}^{p} \sum _{t=1}^{n} \sigma _{t-j}^2\epsilon _{t-j}^2 =O_P (1). \end{aligned}$$

To deal with \(II_n\), we write \(II_n \le 2\sqrt{n}\|\hat{\varvec{\phi }}\| (II_{n,1} + II_{n,2})\) with

$$\begin{aligned} II_{n,1}= & {} \frac{1}{n}\max _{1\le k\le n} \sum _{j=1}^{p} \left| \sum _{t=1}^{k} \left( {\hat{\epsilon }}_t {\hat{\epsilon }}_{t-j} - \epsilon _t \epsilon _{t-j} \right) - \frac{k}{n} \sum _{t=1}^{n} \left( {\hat{\epsilon }}_t {\hat{\epsilon }}_{t-j} - \epsilon _t \epsilon _{t-j} \right) \right| ,\\ II_{n,2}= & {} \frac{1}{n}\max _{1\le k\le n}\sum _{j=1}^{p} \left| \sum _{t=1}^{k} \epsilon _t \epsilon _{t-j} - \frac{k}{n} \sum _{t=1}^{n} \epsilon _t \epsilon _{t-j} \right| . \end{aligned}$$

Note that

$$\begin{aligned}&|{\hat{\epsilon }}_t{\hat{\epsilon }}_{t-j}-\epsilon _t \epsilon _{t-j}|\nonumber \\&\quad \le |{\hat{\sigma }}_t{\hat{\sigma }}_{t-j}-\sigma _t\sigma _{t-j}| |\epsilon _t\epsilon _{t-j}|\nonumber \\&\quad \le \Big \{ |{\hat{\sigma }}_t^2 -\sigma _t^2|\sigma _{t-j} +|{\hat{\sigma }}_t^2 -\sigma _t^2\|{\hat{\sigma }}_{t-j}^2 -\sigma _{t-j}^2|+ \sigma _t |{\hat{\sigma }}_{t-j}^2 -\sigma _{t-j}^2|\Big \}|\epsilon _t\epsilon _{t-j}|/2. \end{aligned}$$
(12)

Moreover, as

$$\begin{aligned}&\sigma _t^2= \frac{1}{1-\beta } +\sum _{j=0}^\infty \alpha \beta ^j y_{t-1-j}^2,\\&{\hat{\sigma }}_t^2= \frac{1-{\hat{\beta }}^t}{1-{\hat{\beta }}}+{\hat{\beta }}^t y_0^2 +\sum _{j=0}^{t-1} {\hat{\alpha }}{\hat{\beta }}^j y_{t-1-j}^2, \end{aligned}$$

on the event \(( |{\hat{\alpha }} - \alpha | \le \rho , |{\hat{\beta }} - \beta | \le \rho )\) with \(\rho <1\), whose probability tends to 1, for any \(N \ge 1\), we have

$$\begin{aligned} {\hat{\sigma }}_t^2 - \sigma _t^2= & {} \frac{1-{\hat{\beta }}^t}{1-{\hat{\beta }}}+{\hat{\beta }}^t y_0^2 - (1-\beta )^{-1} + \sum _{j=0}^{N} ( {\hat{\alpha }} {\hat{\beta }}^j - \alpha \beta ^j ) y_{t-1-j}^2 \nonumber \\&+ O\left( \sum _{j=N+1}^{\infty } \lambda ^j y_{t-1-j}^2\right) \end{aligned}$$
(13)

for some \(\lambda \in (0,1)\). Combining (12) and (13), we can easily show that \(II_{n,1}\le \frac{2}{n}\sum _{j=1}^{p} \sum _{t=1}^{n} |{\hat{\epsilon }}_t {\hat{\epsilon }}_{t-j}-\epsilon _t \epsilon _{t-j}| =o_P(1)\). Then, since \(II_{n,2}=O_P (1/\sqrt{n})\) by Donsker’s invariance principle for martingales (Billingsley, 1968), we have \(II_n = o_P (1)\). This completes the proof of (5).

Moreover, using (13), the invariance principle, and the fact that

$$\begin{aligned} {\hat{\epsilon }}_t^2 -\epsilon _t^2= \frac{(\sigma _t^2-{\hat{\sigma }}_t^2)^2}{\sigma _t^2{\hat{\sigma }}_t^2}\epsilon _t^2 + (\sigma _t^2-{\hat{\sigma }}_t^2)\frac{\epsilon _t^2}{\sigma _t^2}, \end{aligned}$$

we can see that

$$\begin{aligned} \frac{1}{\sqrt{n}}\max _{1\le k\le n}\left| \sum _{t=1}^k {\hat{\epsilon }}_t^2-\frac{k}{n}\sum _{t=1}^n {\hat{\epsilon }}_t^2 -\sum _{t=1}^k\epsilon _t^2+\frac{k}{n}\sum _{t=1}^n \epsilon _t^2\right| =o_P (1) \end{aligned}$$
(14)

(see also Oh & Lee, 2018), which entails \({\hat{T}}_{n,2}-T_{n,2}=o_P (1)\) and the weak convergence of \({\hat{T}}_{n,2}\) to the supremum of the Brownian bridge. This validates the theorem. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, C.K. Test for conditional quantile change in GARCH models. J. Korean Stat. Soc. 51, 480–499 (2022). https://doi.org/10.1007/s42952-021-00149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-021-00149-x

Keywords

Navigation