Skip to main content
Log in

Structural and magnetic properties of combustion synthesized \(\hbox {A}_{2}\mathrm{Ti}_{2}\mathrm{O}_{7}\) (\(\hbox {A} = \hbox {Gd}\), Dy and Y) pyrochlore oxides

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Nanostructured pyrochlore oxides \(\hbox {A}_{2}\hbox {Ti}_{2}\hbox {O}_{7}\) (\(\hbox {A} = \hbox {Gd}\), Dy and Y) have been synthesized through a single step auto-igniting citrate complex combustion process. The structure and phase formation of the prepared combustion product were characterized by X-ray diffraction (XRD) analysis. From the XRD patterns, the average crystallite size and lattice strain were calculated using the Williamson–Hall method. Pyrochlore oxides \(\hbox {A}_{2}\hbox {Ti}_{2}\hbox {O}_{7}\) (\(\hbox {A} = \hbox {Gd}\), Dy and Y) exhibit a cubic pyrochlore structure with the fd3m space group. The microstructure and average grain size of the samples were examined by scanning electron microscopy. The surface area and pore size of the materials were obtained from Brunauer–Emmett–Teller (BET) analysis. The obtained higher BET surface area of the \(\hbox {Gd}_{2}\hbox {Ti}_{2}\hbox {O}_{7}\) material suggests the possibility of excellent photocatalyst activity. The vibrating sample magnetometer studies show that these materials show paramagnetic behaviour at room temperature. These materials have an entropy change that increases when the temperature decreases. So these materials may be used as active magnetic refrigerants at low-temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Garbout A, Ben Taazayet-Belgacem I and Ferid M 2013 J. Alloys Compd. 573 43

    Article  CAS  Google Scholar 

  2. Greedan J E 2006 J. Alloys Compd. 408 444

    Article  Google Scholar 

  3. Ewing R C, Weber W J and Lian J 2004 J. Appl. Phys. 95 5949

    Article  CAS  Google Scholar 

  4. Garton G and Wanklyn B M 1968 J. Mater. Sci. 3 395

    Article  CAS  Google Scholar 

  5. Wanklyn B M 1972 J. Mater. Sci. 7 813

    Article  CAS  Google Scholar 

  6. Harris M J, Zinkin M P, Tun Z, Wanklyn B M and Swainson I P 1994 Phys. Rev. Lett. 73 189

    Article  CAS  Google Scholar 

  7. Gardner J S, Gingras M J P and Greedan J E 2010 Rev. Mod. Phys. 82 53

    Article  CAS  Google Scholar 

  8. Fennell T, Deen P P, Wildes A R et al 2009 Science 326 415

    Article  CAS  Google Scholar 

  9. Bramwell S T, Giblin S R, Calder S, Aldus R J, Prabhakaran D and Fennell T 2009 Nature 461 956

    Article  CAS  Google Scholar 

  10. Chattopadhyay N A, Dasgupta P, Jana Y M and Ghosh D 2004 J. Alloys Compd. 384 6

    Article  CAS  Google Scholar 

  11. Ben Amor N, Bejar M, Dhahri E, Valente M A, Garden J L and Hlil E K 2013 J. Alloys Compd. 563 28

    Article  CAS  Google Scholar 

  12. Ross K A, Proffen T, Dabkowska H A, Quilliam J A, Yaraskavitch L R, Kycia J B et al 2012 Phys. Rev. B 86 174424

    Article  Google Scholar 

  13. Champion J D M, Harris M J, Holdsworth P C W, Wills A S, Balakrishnan G, Bramwell S T et al 2003 Phys. Rev. B 68 020401(R)

    Article  Google Scholar 

  14. Champion J D M, Wills A S, Fennell T, Bramwell S T, Gardner J S and Green M A 2001 Phys. Rev. B 64 140407(R)

    Article  Google Scholar 

  15. Raju N P, Dion M, Gingras M J P, Mason T E and Greedan J E 1999 Phys. Rev. B 59 14489

    Article  CAS  Google Scholar 

  16. Ault J and Welch A 1966 Acta Crystallogr. 20 410

    Article  CAS  Google Scholar 

  17. Joseph J K, Dayas K R, Damodar S, Krishnan B, Krishnankutty K and Nampoori V P N 2008 Spectrochim. Acta A 71 1281

    Article  Google Scholar 

  18. Shao Z M, Saitzek S, Roussel P, Mentre O, Gheorghiu F P, Mitoseriu L et al 2010 J. Solid State Chem. 183 1652

    Article  CAS  Google Scholar 

  19. Hou W M and Ku Y 2011 J. Alloys Compd. 509 5913

    Article  CAS  Google Scholar 

  20. Li Z H, Xue H, Wang X X and Fu X Z 2006 J. Mol. Catal. 206 56

    Article  Google Scholar 

  21. Fuentes A F, Boulahya K, Maczka M, Hanuza J and Amador U 2005 Solid State Sci. 7 343

    Article  CAS  Google Scholar 

  22. Madhu G, Maniammal K and Biju V 2016 Phys. Chem. Chem. Phys. 18 12135

    Article  CAS  Google Scholar 

  23. Hafez H S, Saif M, McLeskey J T Jr, Abdel-Mottaleb M S A, Yahia I S, Story T et al 2009 Int. J. Photo Energy 2009 240402

Download references

Acknowledgements

TJ acknowledges the University of Kerala for financial support under university Junior Research Fellowship (JRF). We are also thankful to SAIF, STIC, Cochin for XRD analysis. In addition, we express our gratefulness to SAIF, IIT Madras for magnetic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V T Kavitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeyasingh, T., Vindhya, P.S., Saji, S.K. et al. Structural and magnetic properties of combustion synthesized \(\hbox {A}_{2}\mathrm{Ti}_{2}\mathrm{O}_{7}\) (\(\hbox {A} = \hbox {Gd}\), Dy and Y) pyrochlore oxides. Bull Mater Sci 42, 195 (2019). https://doi.org/10.1007/s12034-019-1878-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-019-1878-1

Keywords

Navigation