Skip to main content
Log in

Effect of the Controlled High-Intensity Ultrasound on Improving Functionality and Structural Changes of Egg White Proteins

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objective of this research was to investigate the impact of high-intensity ultrasound (HIU) generated by a probe-type sonicator (frequency 20 ± 0.2 kHz and an amplitude of 40%) for 2–20 min on the selected functional and structural properties of egg white proteins (EWPs) and their susceptibility to hydrolysis by alcalase. The protein solubility, foaming, and emulsifying properties were studied as a function of ultrasonication time and related to protein particle and structural properties. The length of ultrasonication exhibited important effect on EWP particle size, uniformity, and charge, affecting also the protein conformation and susceptibility to alcalase hydrolysis and determining functional properties. There was a linear correlation between the particle size decrease and the solubility while a two-step linear correlation between the foam capacity (FC)/foam stability (FS) and particle size was apparent. Specifically, FC and FS sharply increased with decreasing particle size for range from ∼370 to ∼260 nm, and below this range from 260.6 to 68.4 nm, the changes were not that substantial. Besides, the solubility, FC, and FS were directly and linearly related with the absolute value of the particle zeta potential. The overall emulsifying properties were also improved with an increase of sonication time, through both the decrease of the mean particle diameter and the increase of zeta potential, but there was no direct correlation between the emulsion activity/stability index and protein particle size and/or charge. Analysis of EWP structure by Raman spectroscopy revealed that the HIU leads to changes in the secondary structure, while heat and ultrasound generated by the ultrasound bath were not sufficient to exhibit this effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler-Nissen, J. (1986). Enzymic hydrolysis of food proteins. London: Elsevier Applied Science Publishers.

    Google Scholar 

  • Arzeni, C., Martinez, K., Zema, P., Arias, A., Perez, O. E., & Pilosof, A. M. R. (2012b). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108, 463–472.

    Article  CAS  Google Scholar 

  • Arzeni, C., Pérez, O. E., & Pilosof, A. M. R. (2012a). Functionality of egg white proteins as affected by high intensity ultrasound. Food Hydrocolloids, 29, 308–316.

    Article  CAS  Google Scholar 

  • Barukčić, I., Lisak Jakopović, K., Herceg, Z., Karlović, S., & Božanić, R. (2015). Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet whey. Innovative Food Science and Emerging Technology, 27, 94–101.

    Article  Google Scholar 

  • Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., & Ashokkumar, M. (2010). Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrasonics Sonochemistry, 18, 951–957.

    Article  Google Scholar 

  • Chandrapala, J., Zisu, B., Kentish, A., & Ashokkumar, M. (2012). The effects of high-intensity ultrasound on the structural and functional properties of α-lactalbumin, β-lactoglobulin and their mixtures. Food Research International, 48, 940–943.

    Article  CAS  Google Scholar 

  • Chen, D. (2012). Applications of ultrasound in water and wastewater treatment. In D. Chen, S. K. Sharma, & A. Mudhoo (Eds.), Handbook on application of ultrasound: sonochemistry for sustainability. Florida: CRC Press, Taylor & Francis Group.

    Google Scholar 

  • Chi, Z., Chen, X. G., Holtz, J. S. W., & Asher, S. A. (1999). UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure. Biochemistry, 37, 2854–2864.

    Article  Google Scholar 

  • Dojcinovic, M., & Volkov-Husovic, T. (2008). Cavitation damage of the medium carbon steel: implementation of image analysis. Materials Letters, 62, 953–956.

    Article  CAS  Google Scholar 

  • Frydenberg, R. P., Hammershшj, M., Andersen, U., Greve, M. T., & Wiking, L. (2016). Protein denaturation of whey protein isolates (WPIs) induced by high intensity ultrasound during heat gelation. Food Chemistry, 192, 415–423.

    Article  CAS  Google Scholar 

  • Gulseren, I., Guzey, D., Bruce, B. D., & Weiss, J. (2007). Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry, 14, 173–183.

    Article  Google Scholar 

  • Hu, H. Y., & Du, H. N. (2000). α-to-β structural transformation of ovalbumin: heat and pH effects. Journal of Protein Chemistry, 19, 177–183.

    Article  CAS  Google Scholar 

  • Hu, H., Fan, X., Zhou, Z., Xu, X., Fan, G., Wang, L., Huang, X., Pan, S., & Zhu, L. (2013). Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrasonics Sonochemistry, 20, 187–195.

    Article  CAS  Google Scholar 

  • Huang, H., Kwok, K.-C., & Liang, H.-H. (2008). Inhibitory activity and conformation changes of soybean trypsin inhibitors induced by ultrasound. Ultrasonics Sonochemistry, 15, 724–730.

    Article  CAS  Google Scholar 

  • Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93, 386–393.

    Article  CAS  Google Scholar 

  • Kimura, T., Sakamoto, T., Leveque, J.-M., Sohmiya, H., Fujita, M., Ikeda, S., & Ando, T. (1996). Standardization of ultrasonic power for sonochemical reaction. Ultrasonics Sonochemistry, 3, S157.

    Article  CAS  Google Scholar 

  • Lai, K. M., Chuang, Y. S., Chou, Y. C., Hsu, Y. C., Cheng, Y. C., Shi, C. Y., Chi, Y., & Hsu, K. C. (2010). Changes in physicochemical properties of egg white and yolk proteins from duck shell eggs due to hydrostatic pressure treatment. Poultry Science, 89, 729–737.

    Article  CAS  Google Scholar 

  • Lei, B., Majumder, K., Shen, S., & Wu, J. (2011). Effect of sonication on thermolysin hydrolysis of ovotransferrin. Food Chemistry, 124, 808–815.

    Article  CAS  Google Scholar 

  • Li, K., Kang, Z.-L., Zhao, Y.-Y., Xu, X.-L., & Zhou, G.-H. (2014). Use of high-intensity ultrasound to improve functional properties of batter suspension prepared from PSE-like chicken breast meat. Food and Bioprocess Technology, 7, 3466–3477.

    Article  CAS  Google Scholar 

  • Li-Chan, E. C. Y. (1997). The application of Raman spectroscopy in food science. Trends in Food Science and Technology, 7, 361–370.

    Article  Google Scholar 

  • Mason, T. J. (2015). Some neglected or rejected paths in sonochemistry—a very personal view. Ultrasonics Sonochemistry, 25, 89–93.

    Article  CAS  Google Scholar 

  • Mason, T. J., Lorimer, J. P., & Bates, D. M. (1992). Quantifying sonochemistry: casting some light on a ‘black art’. Ultrasonics, 30, 40–42.

    Article  CAS  Google Scholar 

  • Mine, Y. (1995). Recent advances in the understanding of egg white protein functionality. Trends in Food Science and Technology, 6, 225–232.

    Article  CAS  Google Scholar 

  • Mine, Y. (1997). Effect of dry heat and mild alkaline treatment on functional properties of egg white proteins. Journal of Agricultural and Food Chemistry, 45, 2924–2928.

    Article  CAS  Google Scholar 

  • Mine, Y., Tatsushi, N., & Haga, N. (1990). Thermally induced changes in egg white proteins. Journal of Agricultural and Food Chemistry, 38, 2122–2125.

    Article  CAS  Google Scholar 

  • Mirmoghtadaie, L., Aliabadi, S. S., & Hosseini, S. M. (2016). Recent approaches in physical modification of protein functionality. Food Chemistry, 199, 619–627.

    Article  CAS  Google Scholar 

  • Nawrocka, A., Szymańska-Chargot, M., Miś, A., Ptaszyńska, A. A., Kowalski, R., Waśkoa, P., & Gruszecki, W. I. (2015). Influence of dietary fibre on gluten proteins structure—a study on model flour with application of FT-Raman spectroscopy. Journal of Raman Spectroscopy, 46, 309–316.

    Article  CAS  Google Scholar 

  • Ngarize, S., Adams, A., & Howell, N. K. (2004). Studies on egg albumen and whey protein interactions by FT-Raman spectroscopy and rheology. Food Hydrocolloids, 18, 49–59.

    Article  CAS  Google Scholar 

  • O’Sullivan, J., Murray, B., Flynn, C., & Norton, I. (2016). The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids, 53, 141–154.

    Article  Google Scholar 

  • Ozuna, C., Paniagua-Martínez, I., Castaño-Tostado, E., Ozimek, L., & Amaya-Llano, S. L. (2015). Innovative applications of high-intensity ultrasound in the development of functional food ingredients: production of protein hydrolysates and bioactive peptides. Food Research International, 77, 685–696.

    Article  CAS  Google Scholar 

  • Painter, P. C., & Koenig, J. L. (1976). Raman spectroscopic study of the proteins of egg white. Biopolymers, 15, 2155–2166.

    Article  CAS  Google Scholar 

  • Pearce, K. N., & Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3), 716–723.

    Article  CAS  Google Scholar 

  • Shaw, D. L. (1992). Introduction to colloid and surface chemistry (pp. 174–199). London: Butterworth-Heinemann.

    Book  Google Scholar 

  • Shimada, K., & Cheftel, J. C. (1988). Determination of sulfhydryl groups and disulfide bonds in heat-induced gels of soy protein isolate. Journal of Agricultural and Food Chemistry, 36, 147–153.

    Article  CAS  Google Scholar 

  • Stathopulos, P. B., Scholz, G. A., Hwang, Y.-M., Rumfeldt, J. A. O., Lepock, J. R., & Meiering, E. M. (2004). Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Science, 13, 3017–3027.

    Article  CAS  Google Scholar 

  • Stefanović, A. B., Jovanović, J. R., Grbavčić, S. Ž., Šekuljica, N. Ž., Manojlović, V. B., Bugarski, B. M., & Knežević-Jugović, Z. D. (2014). Impact of ultrasound on egg white proteins as a pretreatment for functional hydrolysates production. European Food Research Technology, 239, 979–993.

    Article  Google Scholar 

  • Tan, M. C., Chin, N. L., Yasof, Y. A., Taip, F. S., & Abdullah, J. (2015). Improvement of eggless cake structure using ultrasonically treated whey protein. Food and Bioprocess Technology, 8, 605–614.

    Article  CAS  Google Scholar 

  • Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11.

    Article  CAS  Google Scholar 

  • Tian, H., Xu, G., Yang, B., & Guo, G. (2011). Microstructure and mechanical properties of soy protein/agar blend films: effect of composition and processing methods. Journal of Food Engineering, 107, 21–26.

    Article  CAS  Google Scholar 

  • Tian, J., Wang, Y., Zhu, Z., Zeng, Q., & Xin, M. (2015). Recovery of tilapia (Oreochromis niloticus) protein isolate by high-intensity ultrasound-aided alkaline isoelectric solubilization/precipitation process. Food and Bioprocess Technology, 8, 758–769.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., & Mason, T. J. (2012). Ultrasound processing of fluid foods. In P. J. Cullen, B. K. Tiwari, & V. P. Valdramidis (Eds.), Novel thermal and non-thermal technologies for fluid foods (pp. 135–157). New York: Elsevier Academic Press.

    Chapter  Google Scholar 

  • Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2005). Combined effect of high pressure and temperature on selected properties of egg white proteins. Innovative Food Science and Emerging Technologies, 6, 11–20.

    Article  CAS  Google Scholar 

  • Van der Plancken, I., Van Loey, A., & Hendrickx, M. E. (2007). Foaming properties of egg white proteins affected by heat or high pressure treatment. Journal of Food Engineering, 78, 1410–1426.

    Article  CAS  Google Scholar 

  • Xiong, W., Wang, Y., Zhang, C., Wan, J., Shah, B. R., Pei, Y., Zhou, B., Li, J., & Li, B. (2016). High intensity ultrasound modified ovalbumin: structure, interface and gelation properties. Ultrasonics Sonochemistry, 31, 302–309.

    Article  CAS  Google Scholar 

  • Yanjun, S., Jianhang, C., Shuwen, Z., Hongjuan, L., Jing, L., Uluko, H., Yanling, S., Wenming, C., Wupeng, G., & Jiaping, L. (2014). Effect of power ultrasound pre-treatment on the physical and functional properties of reconstituted milk protein concentrate. Journal of Food Engineering, 124, 11–18.

    Article  Google Scholar 

  • Zhang, P., Hua, T., Feng, S., Xua, Q., Zheng, T., Zhou, M., Chu, X., Huang, X., Lu, X., Pan, S., Li-Chan, E. C. Y., & Hua, H. (2016a). Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel. Ultrasonics Sonochemistry, 29, 380–387.

    Article  CAS  Google Scholar 

  • Zhang, Z., Arrighi, V., Campbell, L., Lonchamp, J., & Euston, S. R. (2016b). Properties of partially denatured whey protein products: formation and characterization of structure. Food Hydrocolloids, 52, 95–105.

    Article  CAS  Google Scholar 

  • Zhou, M., Liu, J., Zhou, Y., Huang, X., Liu, F., Pan, S., & Hu, H. (2016). Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innovative Food Science and Emerging Technology, 34, 205–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to extend their appreciation to the Ministry of Education, Science and Technological Development of the Republic of Serbia for their financial support within the EUREKA Project E!6750 and Project III-46010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorica D. Knežević-Jugović.

Electronic Supplementary Material

Online Resource 1

The emulsion activity/stability index of 2 wt. % ovalbumin treated with high-intensity ultrasound probe for various times (2, 5, 10, 15 and 20 min) at 20±0.2 kHz (GIF 222 kb)

High resolution image (TIFF 2882 kb)

Online Resource 2

Correlations between EAI and ESI and particle size (a) and zeta potential (b) of UPT ovalbumin solution (GIF 29 kb)

High resolution image (TIFF 1093 kb)

High resolution image (TIFF 1043 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanović, A.B., Jovanović, J.R., Dojčinović, M.B. et al. Effect of the Controlled High-Intensity Ultrasound on Improving Functionality and Structural Changes of Egg White Proteins. Food Bioprocess Technol 10, 1224–1239 (2017). https://doi.org/10.1007/s11947-017-1884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1884-5

Keywords

Navigation