Skip to main content

Advertisement

Log in

Rapid ascorbate response to bacterial elicitor treatment in Arabidopsis thaliana cells

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

An early event of the incompatible plant–pathogen interactions is an oxidative burst. On one hand, the ROS generated during oxidative burst is advantageous. ROS can serve as secondary messengers mediating defence gene activation and establishment of additional defences. On the other hand, the concentration of ROS must be carefully regulated to avoid undesired cellular cytotoxicity. The major water soluble, low molecular weight antioxidant, ascorbic acid plays a crucial role in ROS balancing (scavenging). The regulation of ascorbate level, therefore, can be an important point of the fine-tuning of ROS level during the early phase of plant–pathogen interaction. To evaluate how this interaction affects the biosynthesis, the recycling, and the level of ascorbate, we challenged Arabidopsis thaliana cells with two different harpin proteins (HrpZpto and HrpWpto). HrpZpto and HrpWpto treatments caused a well-defined ROS peak. The expression of the alternative oxidase (AOX1a) and vtc5, one of the paralog genes that encode the rate limiting enzyme of ascorbate biosynthesis, followed the elevation of ROS. Similarly, the activity of ascorbate peroxidase and galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) (GLDH), the enzyme catalysing the ultimate, mitochondria coupled step of ascorbate biosynthesis and the level of ascorbate and glutathione also followed the elevation of ROS due to harpin treatment. The enhanced expression of AOX1a, the elevated activity of GLDH, and the increased level of ascorbate and glutathione all can contribute to the mitigation or absence of programmed cell death. Finally, a new function, the fine-tuning of redox balance during plant–pathogen interaction, can be proposed to vtc5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422. doi:10.1104/pp.107.106500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell Online 9:1559–1572. doi:10.1105/tpc.9.9.1559

    Article  CAS  Google Scholar 

  • Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266. doi:10.1111/j.1399-3054.2006.00775.x

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321. doi:10.1146/annurev.py.33.090195.001503

    Article  CAS  PubMed  Google Scholar 

  • Baker CJ, O’Neill NR, Keppler LD, Orlandi EW (1991) Early responses during plant bacteria interaactions in tobacco cell suspension. Phytopathology 81:1504–1507

    Article  Google Scholar 

  • Balogh T, Szarka A (2016) A comparative study: methods for the determination of ascorbic acid in small and middle sized food analytic laboratories. Acta Aliment 1–9. doi:10.1556/AAlim.2015.0017

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient arabidopsis mutant vitamin c-1. Plant Physiol 134:1784–1792. doi:10.1104/pp.103.032185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bindschedler LV, Minibayeva F, Gardner SL, Gerrish C, Davies DR, Bolwell GP (2001) Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+. New Phytol 151:185–194. doi:10.1046/j.1469-8137.2001.00170.x

    Article  CAS  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM, Bolwell GP (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863. doi:10.1111/j.1365-313X.2006.02837.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Camejo D, Guzmán-Cedeño Á, Moreno A (2016) Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiol Biochem 103:10–23. doi:10.1016/j.plaphy.2016.02.035

    Article  CAS  PubMed  Google Scholar 

  • Castro-concha LA, Escobedo RM, Miranda-ham MDL (2006) Measurement of cell viability in in vitro cultures. Methods Mol Biol 318:71–76

    PubMed  Google Scholar 

  • Chang JH, Goel AK, Grant SR, Dangl JL (2004) Wake of the flood: ascribing functions to the wave of type III effector proteins of phytopathogenic bacteria. Curr Opin Microbiol 7:11–18. doi:10.1016/j.mib.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  • Charkowski AO, Alfano JR, Preston G, Yuan J, He SY, Collmer A (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180:5211–5217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Schopfer P (1999) Hydroxyl-radical production in physiological reactions. A novel function of peroxidase. Eur J Biochem 260:726–735. doi:10.1046/j.1432-1327.1999.00199.x

    Article  CAS  PubMed  Google Scholar 

  • Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877. doi:10.1074/jbc.M307525200

    Article  CAS  PubMed  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904. doi:10.1104/pp.107.103325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colville L, Smirnoff N (2008) Antioxidant status, peroxidase activity, and PR protein transcript levels in ascorbate-deficient Arabidopsis thaliana vtc mutants. J Exp Bot 59:3857–3868. doi:10.1093/jxb/ern229

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA. 93:9970–9974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. Recent Adv Carbohydr Bioeng 3–12. doi:10.1016/S0144-8617(00)00204-6

  • Cvetkovska M, Vanlerberghe GC (2012) Coordination of a mitochondrial superoxide burst during the hypersensitive response to bacterial pathogen in Nicotiana tabacum. Plant Cell Environ 35:1121–1136. doi:10.1111/j.1365-3040.2011.02477.x

    Article  CAS  PubMed  Google Scholar 

  • Cvetkovska M, Vanlerberghe GC (2013) Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species. Plant Cell Environ 36:721–732. doi:10.1111/pce.12009

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Hancock JT, Coffey MJ, Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett 382:213–217. doi:10.1016/0014-5793(96)00177-9

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330(Pt 1):115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ (2001) Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587. doi:10.1104/pp.126.4.1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689. doi:10.1111/j.1365-313X.2007.03266.x

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AO, Myers CR, Gordon JS, Martin GB, Vencato M, Collmer A, Wehling MD, Alfano JR, Moreno-Hagelsieb G, Lamboy WF, DeClerck G, Schneider DJ, Cartinhour SW (2006) Whole-genome expression profiling defines the HrpL regulon of Pseudomonas syringae pv. tomato DC3000, allows de novo reconstruction of the Hrp cis clement, and identifies novel coregulated genes. Mol Plant Microbe Interact 19:1167–1179. doi:10.1094/MPMI-19-1167

    Article  CAS  PubMed  Google Scholar 

  • Feys BJ, Parker JE (2000) Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455. doi:10.1016/S0168-9525(00)02107-7

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18. doi:10.1104/pp.110.167569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukunaga K, Fujikawa Y, Esaka M (2010) Light regulation of ascorbic acid biosynthesis in rice via light responsive cis-elements in genes encoding ascorbic acid biosynthetic enzymes. Biosci Biotechnol Biochem 74:888–891. doi:10.1271/bbb.90929

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Badejo AA, Shibata H, Sawa Y, Maruta T, Shigeoka S, Page M, Smirnoff N, Ishikawa T (2011) Expression analysis of the VTC2 and VTC5 genes encoding GDP-l-galactose phosphorylase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. Biosci Biotechnol Biochem 75:1783–1788. doi:10.1271/bbb.110320

    Article  CAS  PubMed  Google Scholar 

  • Garmier M, Priault P, Vidal G, Driscoll S, Djebbar R, Boccara M, Mathieu C, Foyer CH, De Paepe R (2007) Light and oxygen are not required for harpin-induced cell death. J Biol Chem 282:37556–37566. doi:10.1074/jbc.M707226200

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haapalainen M, Engelhardt S, Küfner I, Li C-M, Nürnberger T, Lee J, Romantschuk M, Taira S (2011) Functional mapping of harpin HrpZ of Pseudomonas syringae reveals the sites responsible for protein oligomerization, lipid interactions and plant defence induction. Mol Plant Pathol 12:151–166. doi:10.1111/j.1364-3703.2010.00655.x

    Article  CAS  PubMed  Google Scholar 

  • Haapalainen M, Dauphin A, Li C-M, Bailly G, Tran D, Briand J, Bouteau F, Taira S (2012) HrpZ harpins from different Pseudomonas syringae pathovars differ in molecular interactions and in induction of anion channel responses in Arabidopsis thaliana suspension cells. Plant Physiol Biochem PPB 51:168–174. doi:10.1016/j.plaphy.2011.10.022

    Article  CAS  PubMed  Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127. doi:10.1146/annurev.phyto.45.062806.094325

    Article  PubMed  Google Scholar 

  • Imai T, Niwa M, Ban Y, Hirai M, Ôba K, Moriguchi T (2009) Importance of the l-galactonolactone pool for enhancing the ascorbate content revealed by l-galactonolactone dehydrogenase-overexpressing tobacco plants. Plant Cell Tissue Organ Cult 96:105–112. doi:10.1007/s11240-008-9466-x

    Article  CAS  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signalling. Curr Opin Plant Biol 6:390–396. doi:10.1016/S1369-5266(03)00061-X

    Article  CAS  PubMed  Google Scholar 

  • Keppler LD (1989) Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79:974–978. doi:10.1094/Phyto-79-974

    Article  CAS  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97:8849–8855. doi:10.1073/pnas.97.16.8849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. doi:10.1111/j.1365-3040.2004.01180.x

    Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 97:2940–2945. doi:10.1073/pnas.97.6.2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plantmicrobe Interact MPMI 17:131–139

    Article  CAS  Google Scholar 

  • Kuźniak E (2010) The ascorbate–gluathione cycle and related redox signals in plant–pathogen interactions. In: Anjum NA, Chan MT, Umar S (eds) Ascorbate–glutathione pathway and stress tolerance in plants. Springer, Dordrecht, pp 115–136. doi:10.1007/978-90-481-9404-9_4

    Chapter  Google Scholar 

  • Kvitko BH, Ramos AR, Morello JE, Oh H-S, Collmer A (2007) Identification of harpins in Pseudomonas syringae pv. tomato DC3000, which are functionally similar to HrpK1 in promoting translocation of type III secretion system effectors. J Bacteriol 189:8059–8072. doi:10.1128/JB.01146-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacomme C, Roby D (1999) Identification of new early markers of the hypersensitive response in Arabidopsis thaliana. FEBS Lett 459:149–153. doi:10.1016/S0014-5793(99)01233-8

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Klusener B, Tsiamis G, Stevens C, Neyt C, Tampakaki AP, Panopoulos NJ, Nöller J, Weiler EW, Cornelis GR, Mansfield JW, Nürnberger T (2001) HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci USA 98:289–294. doi:10.1073/pnas.011265298

    CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Lindeberg M, Cartinhour S, Myers CR, Schechter LM, Schneider DJ, Collmer A (2006) Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. Mol Plant Microbe Interact 19:1151–1158. doi:10.1094/MPMI-19-1151

    Article  CAS  PubMed  Google Scholar 

  • Mannervik B (2001) Measurement of glutathione reductase activity. Curr Protoc Toxicol Chapter 7(Unit7):2. doi:10.1002/0471140856.tx0702s00

    Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 1(133):443–447. doi:10.1104/pp.103.028399

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. doi:10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  • Montillet J-L, Chamnongpol S, Rustérucci C, Dat J, van de Cotte B, Agnel J-P, Battesti C, Inzé D, Van Breusegem F, Triantaphylidès C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526. doi:10.1104/pp.105.059907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944

    Article  CAS  PubMed  Google Scholar 

  • Mur LAJ, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520. doi:10.1093/jxb/erm239

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Oba K, Fukui M, Imai Y, Iriyama S, Nogami K (1994) l-Galactono-gamma-lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue. Plant Cell Physiol 35:473–478

    CAS  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139:1291–1303. doi:10.1104/pp.105.067686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polidoros AN, Mylona PV, Arnholdt-Schmitt B (2009) Aox gene structure, transcript variation and expression in plants. Physiol Plant 137:342–353. doi:10.1111/j.1399-3054.2009.01284.x

    Article  CAS  PubMed  Google Scholar 

  • Preston G, Huang HC, He SY, Collmer A (1995) The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol Plant Microbe Interact 8:717–732

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Soole KL, Elthon TE (2004) Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu Rev Plant Biol 55:23–39. doi:10.1146/annurev.arplant.55.031903.141720

    Article  CAS  PubMed  Google Scholar 

  • Reboutier D, Frankart C, Briand J, Biligui B, Rona J-P, Haapalainen M, Barny M-A, Bouteau F (2007) Antagonistic action of harpin proteins: HrpWea from Erwinia amylovora suppresses HrpNea-induced cell death in Arabidopsis thaliana. J Cell Sci 120:3271–3278. doi:10.1242/jcs.011098

    Article  CAS  PubMed  Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349. doi:10.1007/s00425-008-0706-4

    Article  CAS  PubMed  Google Scholar 

  • Simons BH (1999) Enhanced expression and activation of the alternative oxidase during infection of arabidopsis with Pseudomonas syringae pv tomato. Plant Physiol 120:529–538. doi:10.1104/pp.120.2.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl RL, Liebes LF, Farber CM, Silber R (1983) A spectrophotometric assay for dehydroascorbate reductase. Anal Biochem 131:341–344. doi:10.1016/0003-2697(83)90180-X

    Article  CAS  PubMed  Google Scholar 

  • Sun A, Nie S, Xing D (2012) Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides. Plant Physiol 160:1081–1096. doi:10.1104/pp.112.201798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarka A (2013) Quantitative data on the contribution of GSH and Complex II dependent ascorbate recycling in plant mitochondria. Acta Physiol Plant 35:3245–3250. doi:10.1007/s11738-013-1359-x

    Article  CAS  Google Scholar 

  • Szarka A, Tomasskovics B, Bánhegyi G (2012) The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. Int J Mol Sci 13:4458–4483. doi:10.3390/ijms13044458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarka A, Bánhegyi G, Asard H (2013) The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration. Antioxid Redox Signal 19:1036–1044. doi:10.1089/ars.2012.5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller MJ (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J 34:363–375

    Article  CAS  PubMed  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429. doi:10.1111/j.1399-3054.2009.01326.x

    Article  CAS  PubMed  Google Scholar 

  • Unger C, Kleta S, Jandl G, Tiedemann AV (2005) Suppression of the defence-related oxidative burst in bean leaf tissue and bean suspension cells by the necrotrophic pathogen Botrytis cinerea. J Phytopathol 153:15–26. doi:10.1111/j.1439-0434.2004.00922.x

    Article  CAS  Google Scholar 

  • Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG (2012) Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-l-galactose phosphorylase. J Biol Chem 287:14234–14245. doi:10.1074/jbc.M112.341982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. J Mol Sci, Int. doi:10.3390/ijms14046805

    Google Scholar 

  • Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson AG, Mathieu C, Foyer CH, De Paepe R (2007) Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19:640–655. doi:10.1105/tpc.106.044461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189. doi:10.1016/S0076-6879(94)33021-2

    Article  CAS  Google Scholar 

  • Wu Y-X, Von Tiedemann A (2001) Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat. Pestic Biochem Physiol 71:1–10. doi:10.1006/pest.2001.2561

    Article  CAS  Google Scholar 

  • Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950. doi:10.1104/pp.109.138453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zsigmond L, Tomasskovics B, Deák V, Rigó G, Szabados L, Bánhegyi G, Szarka A (2011) Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate-glutathione cycle in mitochondria from complex III deficient Arabidopsis. Plant Physiol Biochem 49:809–815. doi:10.1016/j.plaphy.2011.04.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Alen Collmer for his generous gift of the harpin-containing plasmids. Á.C. and P.H. thank Dr. Veronika Deák to her support. This project is supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). This work was financially supported by the National Scientific Research Fund Grants (OTKA 105416) and MedinProt Protein Excellence foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Szarka.

Additional information

Communicated by E. Kuzniak-Gebarowska.

Á. Czobor and P. Hajdinák contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czobor, Á., Hajdinák, P. & Szarka, A. Rapid ascorbate response to bacterial elicitor treatment in Arabidopsis thaliana cells. Acta Physiol Plant 39, 62 (2017). https://doi.org/10.1007/s11738-017-2365-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-017-2365-1

Keywords

Navigation