Skip to main content
Log in

In vitro regeneration of Melothria maderaspatana via indirect organogenesis

  • Developmental Biology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

An effective protocol was developed for in vitro regeneration of the Melothria maderaspatana via indirect organogenesis in liquid and solid culture systems. Organogenesis was achieved from liquid culture calluses derived from leaf and petiole explants of mature plants. Organogenic calluses (98.2 ± 0.36 and 94.8 ± 0.71%) were induced from both leaf and petiole explants on Murashige and Skoog (MS) liquid medium containing 6.0 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 µM thidiazuron (TDZ); and 6.0 µM 2,4-D and 1.0 µM benzyladenine (BA) combinations, respectively. Adventitious shoot regeneration (68.2 ± 0.06 shoots per explant) was achieved on MS medium supplemented with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water and 0.06 mM glutamine from leaf-derived calluses. Petiole-derived calluses produced adventitious shoots (45.4 ± 0.09 shoots per explant) on MS medium fortified with 2.0 µM BA, 4.0 µM TDZ, 10% v/v coconut water, and 0.08 mM glutamine. Elongation of shoots occurred in MS medium with 2.0 µM gibberellic acid (GA3). Regenerated shoots (2–3 cm in length) rooted (74.2 ± 0.38%) and hardened (85 ± 1.24%) when they were transferred to 1/2-MS medium supplemented with 3.0 µM indole-3-butyric acid (IBA) followed by garden soil, vermiculate, and sand (2:1:1 ratio) mixture. The elongated shoots (4–5 cm in length) were exposed simultaneously for rooting as well as hardening (100%) in moistened [(1/8-MS basal salt solution with 5 µM IBA and 100 mg l−1 Bavistin® (BVN)] garden soil, vermiculate, and sand (2:1:1 ratio) mixture. Subsequently, the plants were successfully established in the field. The survival percentage differed with seasonal variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Amutha S.; Ganapathi A.; Muruganantham M. In vitro organogenesis and plant formation in Vigna radiata (L.) Wilczek. Plant Cell, Tissue Organ Cult. 72: 203–207; 2003. doi:10.1023/A:1022266110750.

    Article  CAS  Google Scholar 

  • Anis M.; Faisal M. In vitro regeneration and mass multiplication of Psoralea corylifolia—an endangered medicinal plant. Indian J. Biotechnol. 4: 261–264; 2005.

    CAS  Google Scholar 

  • Baskaran P.; Jayabalan N. An efficient micropropagation system for Eclipta alba–a valuable medicinal herb. In Vitro Cell. Dev. Biol., Plant 41: 532–539; 2005. doi:10.1079/IVP2005667.

    Article  CAS  Google Scholar 

  • Baskaran P.; Jayabalan N. Rapid micropropagation of Psoralea corylifolia L. using nodal explants cultured in organic additive-supplemented medium. J. Hortic. Sci. Biotechnol. 82: 908–913; 2007.

    CAS  Google Scholar 

  • Delp C. J. Benzimidazole and related fungicides. In: Lyr H. (ed) Modern selective fungicides. VEB Gustav Fischer Verlag, London, pp 233–244; 1987.

    Google Scholar 

  • Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res 50: 151–158; 1968. doi:10.1016/0014–4827(68)90403–5.

    Article  PubMed  CAS  Google Scholar 

  • Garcia P. C.; Rivero R. M.; Ruiz J. M.; Romero L. The role of fungicides in the physiology of higher plants: implications for defense responses. Bot. Rev 69: 162–172; 2003. doi:10.1663/0006-8101(2003)069[0162:TROFIT]2.0.CO;2.

    Article  Google Scholar 

  • Gordon S. A. Occurrence, formation and inactivation of auxin. Ann. Rev. Plant Physiol 5: 341–378; 1954. doi:10.1146/annurev.pp.05.060154.002013.

    Article  CAS  Google Scholar 

  • Handley L. W.; Chambliss O. L. In vitro propagation of Cucumis sativus L. Sci. Hortic 14: 22–23; 1979.

    CAS  Google Scholar 

  • Huetteman C. A.; Preece J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell, Tissue Organ Cult 33: 105–119; 1993. doi:10.1007/BF01983223.

    Article  CAS  Google Scholar 

  • Hussein A. S. M.; Kingston D. G. I. Screening of plants used in Sudan folk medicine for anticancer activity (II). Fitoterapia 53: 119–123; 1982.

    Google Scholar 

  • Jayatilaka K. A. P. W.; Thabrew M. I.; Pathirana C.; De Silva D. G. H.; Perera D. J. B. An evaluation of the potency of Osbeckia octandra and Melothria maderaspatana as antihepatotoxic agents. Planta Med 55: 137–139; 1989. doi:10.1055/s-2006–961906.

    Article  Google Scholar 

  • Kathal R.; Bhatnagar S. P.; Bhojwani S. S. Regeneration of plants from leaf explants of Cucumis melo cv. Pusa sharbati. Plant Cell Rep 7: 449–451; 1988.

    Google Scholar 

  • Locy R. D.; Wehner T. C. Cucumber shoot tip growth on 9 nitrogen sources in in vitro culture. Cucurbits Genet. Coop. Rep 5: 10–11; 1982.

    Google Scholar 

  • Meira Z. Bioreactor technology for plant micropropagation. Hortic. Rev 24: 1–30; 2000.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962. doi:10.1111/j.1399-3054.1962.tb08052.x.

    Article  CAS  Google Scholar 

  • Nabi S. A.; Rashid M. M.; Al-Amin M.; Rasul M. G. Organogenesis in teasle gourd (Momordica dioica Roxb.). Plant Tissue Cult 12: 173–180; 2002.

    Google Scholar 

  • Nugent G.; Wardley-Richardson T.; Lu C. L. Plant regeneration from stem and petal of carnation (Dianthus caryophyllus L.). Plant Cell Rep 10: 477–480; 1991. doi:10.1007/BF00233819.

    Article  CAS  Google Scholar 

  • Punja Z. K.; Abbas N.; Sarmento G. G.; Tang F. A. Regeneration of Cucumis sativus vars, sativus and hardwickii, C. melo and C. metuliferous from explants through somatic embryogenesis and organogenesis. Plant Cell, Tissue Organ Cult. 21: 93–102; 1990. doi:10.1007/BF00033427.

    Article  CAS  Google Scholar 

  • Ramakrishanamacharya C. H.; Krishnaswamy M. R.; Bhima Rao R.; Viswanathan S. Anti-inflammatory efficacy of Melothria madraspatana in active rheumatoid arthritis [1]. Clin. Rheumatol 15: 214–215; 1996. doi:10.1007/BF02230346.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo Y.; Chand P. K. Micropropagation of vitex negundo L. a woody aromatic medicinal shrub, through high frequency axillary shoot proliferation. Plant Cell Rep 18: 301–307; 1998. doi:10.1007/s002990050576.

    Article  CAS  Google Scholar 

  • Selvaraj N.; Vasudevan A.; Manickavasagam M.; Ganapathi A. In vitro organogenesis and plant formation in cucumber. Biol. Plant 50: 123–126; 2006. doi:10.1007/s10535-005-0085-7.

    Article  CAS  Google Scholar 

  • Seo S. H.; Bai D. G.; Park H. Y. High frequency shoot regeneration from leaf explants of cucumber. J. Plant Biotechnol 21: 51–54; 2000.

    Google Scholar 

  • Sinha B. N.; Sasmal D.; Basu S. P. Pharmacological studies on Melothria maderaspatana. Fitoterapia 68: 75–78; 1997.

    Google Scholar 

  • Skirvin R. M.; Chu M. C.; Rukan H. An improved medium for the in vitro rooting of Harbrite peach. Proc. III State Hort. Soc 113: 30–38; 1980.

    Google Scholar 

  • Tejavathi D. H.; Shailaja K. S. Regeneration of plants from the cultures of Bacopa monnieri (L.). Pennell Phytomorphol 49: 447–452; 1999.

    Google Scholar 

  • Thabrew M. I.; Gove C. D.; Hughes R. D.; McFarlane I. G.; Williams R. Protection against galactosamine and tert-butyl hydroperoxide induced hepatocyte damage by Melothria maderaspatana extract. Phytotherapy Res. 9: 513–517; 1995. doi:10.1002/ptr.2650090710.

    Article  Google Scholar 

  • Thabrew M. I.; Jayatilaka K. A. P. W.; Perera D. J. B. Evaluation of the efficacy of Melothria maderaspatana in the alleviation of carbon tetrachloride-induced liver dysfunction. J. Ethnopharmacol 23: 305–312; 1988. doi:10.1016/0378-8741(88)90010-4.

    Article  PubMed  CAS  Google Scholar 

  • Tisserat B.; Murashige T. Probable identity of substances in Citrus that repress asexual embryogenesis. In Vitro 13: 785–789; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay F. M.; Lalonde M. Requirements for in vitro propagation of seven nitrogen- fixing Alnus species. Plant Cell, Tissue Organ Cult. 3: 189–199; 1984. doi:10.1007/BF00040337.

    Article  Google Scholar 

  • Tripathi R. K.; Ram S. Induction of growth and differentiation of carrot callus cultures by carbendazim and benzimidazole. Indian J. Exp. Biol 20: 674–677; 1982.

    CAS  Google Scholar 

  • Vaidyaratnam P. S. V. Indian medicinal plants. Orient Longman Limited, Madras, India; 1995.

    Google Scholar 

  • Vasudevan A.; Selvaraj N.; Ganapathi A.; Kasthurirengan S.; Ramesh Anbazhagan V.; Manickavasagam M. Glutamine: a suitable nitrogen source for enhanced shoot multiplication in Cucumis sativus. Biol. Plant 48: 125–128; 2004. doi:10.1023/B:BIOP.0000024288.82679.50.

    Article  CAS  Google Scholar 

  • Wang H. C.; Chen J. T.; Wu S. P.; Lin M. C.; Chang W. C. Plant regeneration through shoot formation from callus of Areca catechu L. Plant Cell, Tissue Organ Cult 75: 95–98; 2003. doi:10.1023/A:1024649428393.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Director Dr. Rev. Fr. John Britto, Rapinat Herbarium, for selection of this species. The author also wishes to thank University of Bharathidasan Research Fund for financial support of this work, G. G. Gideon for suggestions and P. Sasikumar for the valuable help in plant collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baskaran.

Additional information

Editor: E. Bunn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baskaran, P., Velayutham, P. & Jayabalan, N. In vitro regeneration of Melothria maderaspatana via indirect organogenesis. In Vitro Cell.Dev.Biol.-Plant 45, 407–413 (2009). https://doi.org/10.1007/s11627-008-9172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9172-8

Keywords

Navigation