Skip to main content
Log in

Interpreting slip transmission through mechanically induced interface energies: a Fe–3%Si case study

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoindentation experiments are performed at the vicinity of grain boundaries, in Fe–Si tricrystals, to illustrate the existence of a critical stress at which slip transmission occurs across grain boundaries. Such a critical stress can be considered as a grain boundary yield stress and can be quantified within the framework of conventional gradient plasticity theory, enhanced by introducing a new mechanically induced “interface energy” term. The present study takes a first step in trying to provide a physical interpretation for this “far from thermodynamic equilibrium” interface energy term by conducting nanoindentation tests in three Fe–3wt%Si tricrystals, each of which had three distinct types of grain boundary misorientations, namely 22.5°, 42.0° and 44.6°. By relating the experimentally measured grain boundary yield stress to the predictions of interfacial gradient plasticity, it is possible to determine the interface parameter (\( \xi \)), which provides a measure of the resistance to slip transmission for each grain boundary examined. In particular, microscopic arguments from standard dislocation theory reveal that \( \xi \) depends on both the grain interior properties and the grain boundary structure. The internal length is shown to depend on multiple characteristic lengths of the microstructure, while a new expression is deduced for relating the Hall-Petch slope to both the interface parameter and internal length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lee TC, Robertson IM, Birnbaum HK (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62:131–153

    Article  CAS  Google Scholar 

  2. Lee TC, Robertson IM, Birnbaum HK (1992) Interaction of dislocations with grain boundaries in Ni3Al. Acta Metall Mater 40:2569–2579

    Article  CAS  Google Scholar 

  3. Kacher J, Robertson IM (2014) In situ and tomographic analysis of dislocation/grain boundary interactions in α-titanium. Philos Mag 94:814–829

    Article  CAS  Google Scholar 

  4. Xu S, Xiong L, Chen Y, McDowell DL (2016) Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in fcc metals: a concurrent atomistic-continuum study. npj Comput Mater 2:15016

    Article  CAS  Google Scholar 

  5. Spearot DE, Sangid MD (2014) Insights on slip transmission at grain boundaries from atomistic simulations. Curr Opin Solid State Mater Sci 18:188–195

    Article  CAS  Google Scholar 

  6. Gao Y, Zhuang Z, You XC (2011) A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics. Sci China Phys Mech Astron 54:625–632

    Article  CAS  Google Scholar 

  7. Liu J (2013) Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal. AIP Conf Proc 1532(2013):345

    Article  CAS  Google Scholar 

  8. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Technol Trans ASME 106:326–330

    Article  CAS  Google Scholar 

  9. Aifantis EC (2009) Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst Technol 15:109–115

    Article  CAS  Google Scholar 

  10. Tsagrakis I, Efremidis G, Konstantinidis A, Aifantis EC (2006) Deformation vs. flow and wavelet-based models of gradient plasticity: examples of axial symmetry. Int J Plast 22:1456–1485

    Article  Google Scholar 

  11. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  CAS  Google Scholar 

  12. Aifantis KE, Willis JR (2004) Interfacial jump conditions in strain-gradient plasticity and relations of Hall–Petch type. In: Proc. nat. congr. mech (June 24–26 Chania/Greece), vol 7, pp 372–376

  13. Aifantis KE, Willis JR (2005) The role of interfaces in enhancing the yield strength of composites and polycrystals. J Mech Phys Solids 53:1047–1070

    Article  Google Scholar 

  14. Aifantis KE, Soer WA, De Hosson JTM, Willis JR (2006) Interfaces within strain gradient plasticity: theory and experiments. Acta Mater 54:5077–5085

    Article  CAS  Google Scholar 

  15. Gudmundson P (2004) A unified treatment of strain gradient plasticity. J Mech Phys Solids 52:1379–1406

    Article  Google Scholar 

  16. Bayerschen E, Stricker M, Wulfinghoff S, Weygand D, Böhlke T (2015) Equivalent plastic strain gradient plasticity with grain boundary hardening and comparison to discrete dislocation dynamics. Proc R Soc A 471(2184):20150388

    Article  Google Scholar 

  17. Erdle H, Böhlke T (2017) A gradient crystal plasticity theory for large deformations with a discontinuous accumulated plastic slip. Comput Mech 60:923–942

    Article  Google Scholar 

  18. Wulfinghoff S, Bayerschen E, Böhlke T (2013) A gradient plasticity grain boundary yield theory. Int J Plast 51:33–46

    Article  CAS  Google Scholar 

  19. Aifantis KE, Konstantinidis AA (2009) Hall-Petch revisited at the nanoscale. Mater Sci Eng B 163:139–144

    Article  CAS  Google Scholar 

  20. Zhang X, Aifantis KE (2011) Interpreting the softening of nanomaterials through gradient plasticity. J Mater Res 26:1399–1405

    Article  CAS  Google Scholar 

  21. Zhang X, Aifantis KE, Ngan AHW (2014) Interpreting the stress–strain response of Al micropillars through gradient plasticity. Mater Sci Eng A 591:38–45

    Article  CAS  Google Scholar 

  22. Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Indentation induced dislocation nucleation: the initial yield point. Acta Mater 44:3585–3598

    Article  CAS  Google Scholar 

  23. Soer WA, De Hosson JThM (2005) Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater Lett 59:24–25

    Article  Google Scholar 

  24. Aifantis KE, Ngan AHW (2007) Modeling dislocation—grain boundary interactions through gradient plasticity and nanoindentation. Mater Sci Eng A 459:251–261

    Article  Google Scholar 

  25. Tsurekawa S, Chihara Y, Tashima K, Ii S, Lejcek P (2014) Local plastic deformation in the vicinity of grain boundaries in Fe–3 mass% Si alloy bicrystals and tricrystal. J Mater Sci 49:4698–4704. https://doi.org/10.1007/s10853-014-8150-2

    Article  CAS  Google Scholar 

  26. Ohmura T, Tsuzaki K, Yin F (2005) Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel. Mater Trans 46:2026–2029

    Article  CAS  Google Scholar 

  27. Wang MG, Ngan AHW (2004) Indentation strain burst phenomenon induced by grain boundaries in niobium. J Mater Res 19:2478–2486

    Article  CAS  Google Scholar 

  28. Lejček P, Hofmann S, Paidar V (2003) Solute segregation and classification of [1 0 0 0] tilt grain boundaries in α-iron: consequences for grain boundary engineering. Acta Mater 51:3951–3963

    Article  Google Scholar 

  29. Soer WA, Aifantis KE, De Hosson JThM (2005) Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater 53:4665–4676

    Article  CAS  Google Scholar 

  30. Zhang X, Aifantis KE (2015) Examining the evolution of the internal length as a function of plastic strain. Mater Sci Eng A 631:27–32

    Article  CAS  Google Scholar 

  31. Zhang X, Aifantis KE, Senger J, Weygand D, Zaiser M (2014) Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: how do they relate to the dislocation microstructure? J Mater Res 29:2116–2128

    Article  CAS  Google Scholar 

  32. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21:399–424

    Article  CAS  Google Scholar 

  33. Livingston JD, Chalmers B (1957) Multiple slip in bicrystal deformation Glissement multiple dans la déformation d’un bickistalMehrfachgleitung bei der verformung von bikristallen. Acta Metall 5:322–327

    Article  CAS  Google Scholar 

  34. Shen Z, Wagoner RH, Clark WAT (1986) Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr Metall 20:921–926

    Article  CAS  Google Scholar 

  35. Lee TC, Robertson IM, Birnbaum HK (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23:799–803

    Article  CAS  Google Scholar 

  36. Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59:283–296

    Article  CAS  Google Scholar 

  37. Abuzaida W, Sangid MD, Sehitoglu H, Carroll J, Lambros J (2012) The role of slip transmission on plastic strain accumulation across grain boundaries. Procedia IUTAM 4:169–178

    Article  Google Scholar 

  38. Sangid MD, Ezaz T, Sehitoglu H (2012) Energetics of residual dislocations associated with slip–twin and slip–GBs interactions. Mater Sci Eng A 542:21–30

    Article  CAS  Google Scholar 

  39. de Koning M, Miller R, Bulatov VV, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A 82(202):2511–2527

    Article  Google Scholar 

  40. Smith D (1982) Interactions of dislocations with grain boundaries. J Phys Colloq 43:C6-225–C6-237

    Article  Google Scholar 

  41. Spearot DE, Tschopp MA, Jacob KI, McDowell DL (2007) Tensile strength of  <100> and  <110> tilt bicrystal copper interfaces. Acta Mater 55:705–714

    Article  CAS  Google Scholar 

  42. Sangid MD, Ezaz T, Sehitoglu H (2012) Energetics of residual dislocations associated with slip-twin and slip-GBs interactions. Mater Sci Eng A 542:21–30

    Article  CAS  Google Scholar 

  43. Rice JR (1992) Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J Mech Phys Solids 40:239–271

    Article  CAS  Google Scholar 

  44. Tschopp MA, Tucker GJ, McDowell DL (2007) Atomistic simulations of free volume in < 100 > and < 110 > symmetric tilt grain boundaries in Cu and Al. Plasticity From the Atomic Scale to Constitutive Laws, TMS Annual Meeting 2007, pp 33–42

  45. Tucker GJ, Tschopp MA, McDowell DL (2010) Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation. Acta Mater 58:6464–6473

    Article  CAS  Google Scholar 

  46. Friedel J (1964) Dislocations. Pergamon press, Oxford, pp 260–263

    Google Scholar 

  47. Weertman J, Weertman JR (1992) Elementary dislocation theory. Oxford University Press Inc, New York, pp 126–130

    Google Scholar 

Download references

Acknowledgements

KEA, HD and SAH are grateful for the financial support from the US Department of Energy Office of Basic Energy Sciences under Grant Nos. DE-SC0016306 and DE-SC0017715. HS and ST would like to acknowledge support form the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 16H06366. PL would like to acknowledge the support from the Czech Science Foundation (Grant No. P108/12/G043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. E. Aifantis or S. Tsurekawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aifantis, K.E., Deng, H., Shibata, H. et al. Interpreting slip transmission through mechanically induced interface energies: a Fe–3%Si case study. J Mater Sci 54, 1831–1843 (2019). https://doi.org/10.1007/s10853-018-2929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2929-5

Keywords

Navigation