Skip to main content
Log in

Characterization of the Cutaneous Bacterial Communities of Two Giant Salamander Subspecies

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pathogens currently threaten the existence of many amphibian species. In efforts to combat global declines, researchers have characterized the amphibian cutaneous microbiome as a resource for disease management. Characterization of microbial communities has become useful in studying the links between organismal health and the host microbiome. Hellbender salamanders (Cryptobranchus alleganiensis) provide an ideal system to explore the cutaneous microbiome as this species requires extensive conservation management across its range. In addition, the Ozark hellbender subspecies (Cryptobranchus alleganiensis bishopi) exhibits chronic wounds hypothesized to be caused by bacterial infections, whereas the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) does not. We assessed the cutaneous bacterial microbiome of both subspecies at two locations in the state of Missouri, USA. Through 16S rRNA gene-based amplicon sequencing, we detected more than 1000 distinct operational taxonomic units (OTUs) in the cutaneous and environmental bacterial microbiome. Phylogenetic and abundance-based dissimilarity matrices identified differences in the bacterial communities between the two subspecies, but only the abundance-based dissimilarity matrix identified differences between wounds and healthy skin on Ozark hellbenders. The higher abundance of OTUs on Ozark wounds suggests that commensal bacteria present on the skin and environment may be opportunistically colonizing the wounds. This brief exploration of the hellbender cutaneous bacterial microbiome provides foundational support for future studies seeking to understand the hellbender cutaneous bacterial microbiome and the role of the bacterial microbiota on chronic wounds of Ozark hellbenders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Federici E, Rossi R, Fidati L, Paracucchi R, Scargetta S, Montalbani E, Franzetti A, La Porta G, Fagotti A, Simonceli F, Cenci G, Di Rosa I (2015) Characterization of the skin microbiota in Italian stream frogs (Rana italica) infected and uninfected by a cutaneous parasitic disease. Microbes Environ 30:262–269

    Article  PubMed  PubMed Central  Google Scholar 

  2. Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5:441

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vredenburg VT, Briggs CJ, Harris RN (2011) Host-pathogen dynamics of amphibian chytridiomycosis: the role of the skin microbiome in health and disease. Fungal diseases: an emerging challenge to human, animal, and plant health. National Academic Press, Washington D.C., pp 342–355

    Google Scholar 

  4. Barker CJ, Gillett A, Polkinghorne A, Timms P (2013) Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Vet Microbiol 167:554–564

    Article  CAS  PubMed  Google Scholar 

  5. Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250

    Article  PubMed  Google Scholar 

  6. Shabbir MZ, Park J, Muhammad K, Rabbani M, Rana MY, Harvill ET (2014) Culture independent analysis of respiratory microbiome of houbara bustard (Chlamydotis undulata) revealed organisms of public health significance. Int J Agric Biol 16:222–226

    Google Scholar 

  7. Ishak HD, Plowes R, Sen R, Kellner K, Meyer E, Estrada DA, Dowd SE, Mueller UG (2011) Bacterial diversity in Solenopsis invicta and Solenopsis geminata ant colonies characterized by 16S amplicon 454 pyrosequencing. Microb Ecol 61:821–831

    Article  PubMed  Google Scholar 

  8. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150

    Article  Google Scholar 

  9. Nickerson MA, Mays CE (1973) The hellbenders: North American ‘giant salamanders’. Milwaukee Public Museum, Milwaukee

  10. Foster RL, McMillan AM, Roblee KJ (2009) Population status of hellbender salamanders (Cryptobranchus alleganiensis) in the Allegheny River drainage of New York State. J Herpetol 43:579–588

    Article  Google Scholar 

  11. Hecht-Kardasz KA, Nickerson MA, Freake M, Colclough P (2012) Population structure of the hellbender (Cryptobranchus alleganiensis) in a Great Smoky Mountains stream. Bull Fla Museum Nat Hist 51:227

    Google Scholar 

  12. Briggler J, Utrup J, Davidson C, Humphries J, Groves J, Johnson T, Ettling J, Wanner M, Traylor-Holzer K, Reed D, Lindgren V, Byers O (2007) Hellbender population and habitat viability assessment: final report. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley

    Google Scholar 

  13. Burgmeier NG, Unger SD, Sutton TM, Williams RN (2011) Population status of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana. J Herpetol 45:195–201

    Article  Google Scholar 

  14. Federal Register (2011) Endangered and threatened wildlife and plants; endangered status for the Ozark hellbender salamander. Fed Commun Comm 76:61956–61978

    Google Scholar 

  15. Wheeler BA, Prosen E, Mathis A, Wilkinson RF (2003) Population declines of a long-lived salamander: a 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biol Conserv 109:151–156

    Article  Google Scholar 

  16. Hiler WR, Wheeler BA, Trauth SE (2005) Abnormalities in the Ozark hellbender (Cryptobranchus alleganiensis bishopi) in Arkansas: a comparison between two rivers with a historical perspective. J Arkansas Acad Sci 59:88–94

    Google Scholar 

  17. Nickerson CA, Ott CM, Castro SL, Garcia VM, Molina TC, Briggler JT, Pitt AL, Tavano JJ, Byram JK, Barrila J et al (2011) Evaluation of microorganisms cultured from injured and repressed tissue regeneration sites in endangered giant aquatic Ozark hellbender salamanders. PLoS One 6, e28906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wheeler BA, McCallum ML, Trauth SE (2002) Abnormalities in the Ozark hellbender, Cryptobranchus alleganiensis bishopi. J Arkansas Acad Sci 56:250–252

    Google Scholar 

  19. Irwin K (2008) Ozark hellbender long-term monitoring SWG project. Arkansas Game and Fish Commission, Benton

    Google Scholar 

  20. Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36

    Article  Google Scholar 

  21. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  22. Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci U S A 111:E5049–E5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fitzpatrick BM, Allison AL (2014) Similarity and differentiation between bacteria associated with skin of salamanders (Plethodon jordani) and free-living assemblages. FEMS Microbiol Ecol 88:482–494

    Article  CAS  PubMed  Google Scholar 

  24. Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840

    Article  CAS  PubMed  Google Scholar 

  25. Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Küpfer E, Tobler U, Davis LR, Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V (2014) Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One 9, e96375

    Article  PubMed  PubMed Central  Google Scholar 

  26. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  27. Culp CE, Iii JOF, Belden LK (2007) Identification of the natubal bacterial microflora on the skin of eastern newts, bullfrog tadpoles and redback salamanders. Herpetologica 63:66–71

    Article  Google Scholar 

  28. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A 105:17994–17999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bolger D, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  32. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  33. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Statist 11:265–270

    Google Scholar 

  38. Faith DP, Baker AM (2006) Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform Online 2:121–128

    Google Scholar 

  39. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Champaign

    Google Scholar 

  40. Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  41. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  PubMed  Google Scholar 

  42. Rees GN, Baldwin DS, Watson GO, Perryman S, Nielsen DL (2004) Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Anton Leeuw Int J G 86:339–347

    Article  Google Scholar 

  43. Okasen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoencs E, Wagner H (2016) Vegan: community ecology package. R package version 2.4-0

  44. Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  45. Longo AV, Savage AE, Hewson I, Zamudio KR (2015) Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians. Roy Soc Open Sci 2:140377

    Article  Google Scholar 

  46. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  48. Atlas RM (2010) Handbook of microbiological media. CRC Press, Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  49. McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596

    Article  CAS  PubMed  Google Scholar 

  50. Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B (2016) Microbiome variation across amphibian skin regions: implications for chytridiomycosis mitigation efforts. Microb Ecol 71:221–232

    Article  PubMed  Google Scholar 

  51. Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Jensen RV, Belden LK (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crowhurst RS, Faries KM, Collantes J, Briggler JT, Koppelman JB, Eggert LS (2011) Genetic relationships of hellbenders in the Ozark highlands of Missouri and conservation implications for the Ozark subspecies (Cryptobranchus alleganiensis bishopi). Conserv Genet 12:637–646

    Article  Google Scholar 

  53. Feist SM, Briggler JT, Koppelman JB, Eggert LS (2014) Within-river gene flow in the hellbender (Cryptobranchus alleganiensis) and implications for restorative release. Conserv Genet 15:953–966

    Article  Google Scholar 

  54. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

  55. Unger SD, Rhodes OE, Sutton TM, Williams RN (2013) Population genetics of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) across multiple spatial scales. PLoS One 8, e74180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Olson ZH, Burgmeier NG, Zollner PA, Williams RN (2013) Survival estimates for adult Eastern Hellbenders and their utility for conservation. J Herpetol 47:71–74

    Article  Google Scholar 

  57. Bodinof CM, Briggler JT, Junge RE, Mong T, Beringer J, Wanner MD, Schuette CD, Ettling J, Millspaugh JJ (2012) Survival and body condition of captive-reared juvenile Ozark hellbenders (Cryptobranchus alleganiensis bishopi) following translocation to the wild. Copeia 2012:150–159

    Article  Google Scholar 

  58. Becker MH, Richards-Zawacki CL, Gratwicke B, Belden LK (2014) The effect of captivity on the cutaneous bacterial community of the critically endangered Panamanian golden frog (Atelopus zeteki). Biol Conserv 176:199–206

    Article  Google Scholar 

  59. Merrifield DL, Rodiles A (2015) The fish microbiome and its interactions with mucosal tissues. In: Mucosal health in aquaculture. Academic, Oxford, UK, pp 273–295

    Chapter  Google Scholar 

  60. Pfingsten RA (1989) The status and distribution of the hellbender, Cryptobranchus alleganiensis, in Ohio. Ohio J Sci 89:3

    Google Scholar 

  61. Lauer A, Simon MA, Banning JL, Lam BA, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J 2:145–157

    Article  CAS  PubMed  Google Scholar 

  62. Michaels CJ, Antwis RE, Preziosi RF (2014) Impact of plant cover on fitness and behavioural traits of captive red-eyed tree frogs (Agalychnis callidryas). PLoS One 9(4):295207

    Article  Google Scholar 

  63. Roth T, Foley J, Worth J, Piovia-Scott J, Pope K, Lawler S (2013) Bacterial flora on Cascades frogs in the Klamath mountains of California. Comp Immunol Microb 36:591–598

    Article  Google Scholar 

  64. Lam BA, Walke JB, Vredenburg VT, Harris RN (2010) Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 143:529–531

    Article  Google Scholar 

  65. Olson ME, Gard S, Brown M, Hampton R, Morck DW (1992) Flavobacterium indologenes infection in leopard frogs. JAVMA J Am Vet Med A 201:1766–1770

    CAS  Google Scholar 

  66. Taylor SK, Williams ES, Thorne ET, Mills KW, Withers DI, Pier AC (1999) Causes of mortality of the Wyoming toad. J Wildl Dis 35:49–57

    Article  CAS  PubMed  Google Scholar 

  67. Densmore CL, Green DE (2007) Diseases of amphibians. ILAR J 48:235–254

    Article  CAS  PubMed  Google Scholar 

  68. Geng Y, Wang KY, Zhou ZY, Li CW, Wang J, He M, Yin ZQ, Lai WM (2011) First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J Comp Pathol 145:95–102

    Article  CAS  PubMed  Google Scholar 

  69. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5, e10957

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KPC, Harris RN (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank members of the Williams lab for assistance in revising this document. Special thanks also go to Jyothi Thimmapuram from the Purdue Bioinformatics Core, Phillip San Miguel and Paul Parker from the Purdue Genomics Core for assistance in project design, Bart Kraus for assistance in field collection, and Ardith Wang for assistance in sequencing preparation. Special thanks to the Missouri Department of Conservation for their interest and support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Obed Hernández-Gómez.

Ethics declarations

Funding

Funding for this study was provided by Purdue University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Gómez, O., Kimble, S.J.A., Briggler, J.T. et al. Characterization of the Cutaneous Bacterial Communities of Two Giant Salamander Subspecies. Microb Ecol 73, 445–454 (2017). https://doi.org/10.1007/s00248-016-0859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0859-9

Keywords

Navigation