Skip to main content
Log in

Structural and electronic structure differences due to the O–H···O and O–H···S bond formation in selected benzamide derivatives: a first-principles molecular dynamics study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory-based methods were employed to obtain static and dynamical descriptions of the molecular properties of 2-hydroxy-N-methylbenzamide and 2-hydroxy-N-methylthiobenzamide; compounds containing O–H···O and O–H···S strong, intramolecular hydrogen bonds. These compounds are important as analogues of commercial analgesic and antipyretic medicines. In the current study the classical Kohn–Sham method was applied to develop static models describing the geometric parameters and proton potentials. The topological analysis of the electron density was performed via atoms in molecules theory. Subsequently, Car–Parrinello molecular dynamics investigations were performed in vacuo and in the solid state. The geometric and spectroscopic properties were investigated and compared with available experimental data. The influence of quantum effects on the intramolecular hydrogen bond properties were studied via path integral molecular dynamics in the solid state for 2-hydroxy-N-methylbenzamide. We found that the proton behavior depends strongly on the type of acceptor: the sulfur-containing bridge has significantly smaller proton flexibility than the oxygen-bearing analogue, which is reflected in the electronic structure and bridge dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Soldatos CR, Kales A, Bixler EO, Scharf MB, Kales JD (1978) Pharmacol 16:193–198

    Article  CAS  Google Scholar 

  2. Kirk RE, Othmer DF (1997) Kirk-Othmer encyclopedia of chemical technology, vol 21, 4th edn. Wiley, New York, pp 601–626

    Google Scholar 

  3. Way EL, Takemori AE, Smith GE Jr, Anderson HH, Brodie DC (1953) J Pharmacol Exp Ther 108:450–460

    CAS  Google Scholar 

  4. Fuente De La R, Sonawane ND, Arumainayagam D, Verkman AS (2006) Br J Pharmacol 149:551–559

    Article  CAS  Google Scholar 

  5. Zhu X-F, Wang J-S, Cai L-L, Zeng Y-X, Yang D (2006) Cancer Sci 97:84–89

    Article  CAS  Google Scholar 

  6. Agrawal VK, Sharma S (1984) Pharmazie 39:373–378

    CAS  Google Scholar 

  7. Brown ME, Fitzner JN, Stevens T, Chin W, Wright CD, Boyce JP (2008) Bioorg Med Chem 16:8760–8764

    Article  CAS  Google Scholar 

  8. Wagner G, Singer D, Weuffen W (1966) Pharmazie 21:161–166

    CAS  Google Scholar 

  9. Weuffen W, Wagner G, Singer D, Hellmuth L (1966) Pharmazie 21:477–482

    CAS  Google Scholar 

  10. Sur K, Shome SC (1971) Anal Chim Acta 57:201–208

    Article  CAS  Google Scholar 

  11. Sur K, Mazumdar M, Shome SC (1972) Anal Chim Acta 59:306–310

    Article  CAS  Google Scholar 

  12. Banerjee K, Raychaudhury S (1982) Bull Chem Soc Jpn 55:3621–3624

    Article  CAS  Google Scholar 

  13. Hay BP, Dixon DA, Vargas R, Garza J, Raymond KN (2001) Inorg Chem 40:3922–3935

    Article  CAS  Google Scholar 

  14. Padwa A, Beall LS, Heidelbaugh TM, Liu B, Sheehan SM (2000) J Org Chem 65:2684–2695

    Article  CAS  Google Scholar 

  15. Price SL (2009) Acc Chem Res 42:117–126

    Article  CAS  Google Scholar 

  16. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  17. Grabowski S (2006) Hydrogen bonding—new insights. Challenges and advances in computational chemistry and physics 3. Springer, Dordrecht

    Google Scholar 

  18. Hobza P, Havlas Z (2000) Chem Rev 100:4253

    Article  CAS  Google Scholar 

  19. Saam J, Tajkhorshid E, Hayashi S, Schulten K (2002) Biophys J 83:3097–3112

    Article  CAS  Google Scholar 

  20. Haas AH, Lancaster CRD (2004) Biophys J 87:4298–4315

    Article  CAS  Google Scholar 

  21. Betzel C, Gourinath S, Kumar P, Kaur P, Perbandt M, Eschenburg S, Singh TP (2001) Biochemistry 40:3080–3088

    Article  CAS  Google Scholar 

  22. Bertolasi V, Gilli P, Ferretti V, Gilli G (1996) Chem Eur J 2:925–934

    Article  CAS  Google Scholar 

  23. Tour JM, Kozaki M, Seminario JM (1998) J Am Chem Soc 120:8486–8493

    Article  CAS  Google Scholar 

  24. Alarcón SH, Olivieri AC, Sanz D, Claramunt RM, Elguero J (2004) J Mol Struct 705:1–9

    Article  CAS  Google Scholar 

  25. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  26. Hammes-Schiffer S (2001) Acc Chem Res 34:273–281

    Article  CAS  Google Scholar 

  27. Peters KS (2009) Acc Chem Res 42:89–96

    Article  CAS  Google Scholar 

  28. Iordanova N, Hammes-Schiffer S (2002) J Am Chem Soc 124:4848–4856

    Article  CAS  Google Scholar 

  29. Szatyłowicz H, Krygowski TM, Hobza P (2007) J Phys Chem A 111:170–175

    Article  CAS  Google Scholar 

  30. Szatyłowicz H, Krygowski TM, Zachara-Horeglad JE (2007) J Chem Inf Model 47:875–886

    Article  CAS  Google Scholar 

  31. Szatyłowicz H (2008) J Phys Org Chem 21:897–914

    Article  CAS  Google Scholar 

  32. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  33. Gilli P, Bertolasi V, Ferretti V, Gilli G (1994) J Am Chem Soc 116:909–915

    Article  CAS  Google Scholar 

  34. Jezierska A, Panek JJ (2009) J Comput Chem 30:1241–1250

    Article  CAS  Google Scholar 

  35. Steiner T (1998) Chem Commun 411–412

  36. Pertlik F (1992) Z Kristallogr 202:17–23

    Article  CAS  Google Scholar 

  37. Steinwender E, Mikenda W (1990) Monatsh Chem 121:809–820

    Article  CAS  Google Scholar 

  38. Mikenda W, Pertlik F, Steinwender E (1993) Monatsh Chem 124:867–875

    Article  CAS  Google Scholar 

  39. Mikenda W, Steinwender E, Mereiter K (1995) Monatsh Chem 126:495–504

    Article  CAS  Google Scholar 

  40. Pertlik F (1990) Monatsh Chem 121:129–139

    Article  CAS  Google Scholar 

  41. Jezierska A, Novič M, Panek JJ (2009) Pol J Chem 83:799–819

    CAS  Google Scholar 

  42. Jezierska A, Panek JJ, Koll A (2008) Chem Phys Chem 9:839–846

    CAS  Google Scholar 

  43. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  44. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  45. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  46. Marx D, Parrinello M (1996) Science 271:179–181

    Article  CAS  Google Scholar 

  47. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  48. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  49. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CT

  51. Bader RFW (1990) Atoms in molecules. A quantum theory. Clarendon Press, Oxford

    Google Scholar 

  52. Bader RFW (1991) AIMPAC, suite of programs for the theory of atoms in molecules. McMaster University, Hamilton, ON

    Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  54. Troullier N, Martins JL (1991) Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  55. Schlegel HB (1984) Theor Chim Acta 66:333–340

    Article  CAS  Google Scholar 

  56. Nosé S (1984) Mol Phys 52:255–268

    Article  Google Scholar 

  57. Nosé S (1984) J Chem Phys 81:511–519

    Article  Google Scholar 

  58. Hoover WG (1985) Phys Rev A 31:1695–1697

    Article  Google Scholar 

  59. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  60. Marx D, Parrinello M (1996) J Chem Phys 104:4077–4082

    Article  CAS  Google Scholar 

  61. Tuckerman ME, Marx D, Klein ML, Parrinello M (1996) J Chem Phys 104:5579–5588

    Article  CAS  Google Scholar 

  62. Tuckerman ME, Berne BJ, Martyna GJ, Klein ML (1993) J Chem Phys 99:2796–2808

    Article  Google Scholar 

  63. CPMD Copyright IBM Corp. 1990–2004, Copyright MPI fuer Festkoerperforschung Stuttgart 1997–2001

  64. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  65. Gnuplot, Copyright (C) 1986–1993, 1998, 2004 Williams T, Kelley C, Copyright (C) 2004–2007 Broeker HB, Campbell J, Cunningham R, Denholm D, Elber G, Fearick R, Grammes C, Hart L, Hecking L, Koenig T, Kotz D, Kubaitis E, Lang R, Lehmann A, Mai A, Steger C, Tkacik T, Van der Woude J, Van Zandt JR, Woo A, Merritt E, Mikulík P, Zellner J

  66. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158

    Article  CAS  Google Scholar 

  67. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  68. Biswal HS, Chakraborty S, Wategaonkar S (2008) J Chem Phys 129:184311

    Article  CAS  Google Scholar 

  69. Desiraju GR (2002) Acc Chem Res 35:565–573

    Article  CAS  Google Scholar 

  70. Goebel JR, Ault BS, Del Bene JE (2001) J Phys Chem A 105:11365–11370

    Article  CAS  Google Scholar 

  71. Posokhov Y, Gorski A, Spanget-Larsen J, Duus F, Hansen PE, Waluk J (2001) Chem Phys Lett 350:502–508

    Article  CAS  Google Scholar 

  72. Pauling LJ (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  73. Tangney P, Scandolo S (2002) J Chem Phys 116:14–24

    Article  CAS  Google Scholar 

  74. Wathelet V, Champagne B, Mosley DH, André J-M, Massidda S (1997) Chem Phys Lett 275:506–512

    Article  CAS  Google Scholar 

  75. Gaigeot M-P, Sprik M (2003) J Phys Chem B 107:10344–10358

    Article  CAS  Google Scholar 

  76. Benoit M, Marx D (2005) Chem Phys Chem 6:1738–1741

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Harald Forbert (Ruhr-Universität Bochum) for the program for dipole moment transformations. We also gratefully acknowledge the Academic Computer Center (TASK) in Gdańsk and the Poznań Supercomputing and Networking Center (PCSS) for providing CPU time and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Jezierska.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jezierska, A., Panek, J.J. & Mazzarello, R. Structural and electronic structure differences due to the O–H···O and O–H···S bond formation in selected benzamide derivatives: a first-principles molecular dynamics study. Theor Chem Acc 124, 319–330 (2009). https://doi.org/10.1007/s00214-009-0612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0612-2

Keywords

Navigation