Skip to main content

Advertisement

Log in

Geochemistry and health aspects of F-rich mountainous streams and groundwaters from sierras Pampeanas de Cordoba, Argentina

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Symptoms of dental fluorosis have been observed in rural communities located in the Sierras Pampeanas de Córdoba, a mountainous area in Central Argentina. The clinical assessment was performed in the Charbonier Department, where the fluoride (F) intake was determined to be 3.90 ± 0.20 mg day−1 (n = 16). In this community, mild and severe fluorosis reach an incidence of 86.7% (total teeth surface = 636 teeth) among the children population. To determine the origin and distribution of fluorine in natural waters from the Charbonier Department and nearby regions, sampling was performed in the area covering the San Marcos River basin. The obtained results show that F concentrations vary between ~1 to ~2.5 mg l−1, with an outlier value of 8 mg l−1. The spatial distribution of F shows that the lowest concentrations are found at the basin’s catchments. Maximum values are located in two sectors of the basin: the Charbonier depression in the eastern part and at the San Marcos village, downstream the main collector, in the western part of the basin. In these two regions, the F contents in ground- and surface waters are >2.0 mg l−1 and nearly constant. Dissolved F in natural waters from the study area has its origin in the weathering of F-bearing minerals present in the region’s dominant lithology. The extent of mineral weathering is mostly determined by the residence time of water within the aquatic reservoir. Longer residence times and a major solid–water interaction lead to enhanced release of F. This explains the higher F concentrations found in basin areas with lower run off. The removal of F from water appears to occur by neither fluorite precipitation, nor by adsorption. Hence, variations in F concentrations seem to be more related to regional hydrological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appelo CAJ, Postma D (1999) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 535

    Google Scholar 

  • Arnesen AKM, Krogstad T (1998) Sorption and desorption of fluoride in soil polluted from the aluminium smelter at Årdal in Western Norway. Water Air Soil Pollut 103:357–373

    Article  Google Scholar 

  • Bailey SW (1984) Reviews in mineralogy: micas, vol 13. Mineralogical Society of America. Book Crafters, Chelsea

    Google Scholar 

  • Beltramone CA (2004) Caracterización morfoestructural del piedemonte occidental de las sierras Chica y de Pajarillo–Copacabana entre La Cumbre y Las Lajas–provincia de Córdoba. Revista de la Asociación Geol Argentina 59(3):423–432

    Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97(1–2):1–29

    Article  Google Scholar 

  • Browne D, Whelton H, O’Mullane (2005) Fluoride metabolism and fluorosis. J Dent 33:177–186

    Article  Google Scholar 

  • Burt BA, Eklund SA (1992) Dentistry, dental practice and the community, 4th edn. WB Saunders, Philadelphia, p 147

    Google Scholar 

  • CAA Código Alimentario Argentino (1994) Art. 1 Res. MS y AS Nº494. Ley 18284. Dec. Reglamentario 2126. Anexo I y II. Marzocchi, Buenos Aires

    Google Scholar 

  • Caffe P (1993) Petrología y estructura del área comprendida entre las localidades de Pintos y Quilpo Sud, Departamentos de Punilla y Cruz del Eje. Provincia de Córdoba. Trabajo Final (inédito). Departamento de Geología Básica, Facultad de Ciencias Exacta, Físicas y Naturaless, UN Córdoba

    Google Scholar 

  • Colombo F (2001) Geología y mineralogía de pegmatitas y petrología de las rocas encajonantes. Zona de El Pato, Departamento Punilla, Córdoba, Argentina. Undergraduate thesis (unpublished). Departamento de Geología Básica, Facultad de Ciencias Exactas, Físicas y Naturales, UN Córdoba

  • Colombo F, Lira R, Dorais MJ (2010) Mineralogy and crystal chemistry of micas from the A-type El Portezuelo Granite and related pegmatites, Catamarca (NW Argentina). J Geosci 55(1):43–56

    Article  Google Scholar 

  • Dahlquist JA, Pankhurst RJ, Rapela CW, Casquet C, Fanning CM, Alasino P, Baez M (2006) The San Blas Pluton: an example of carboniferous plutonism in the Sierras Pampeanas, Argentina. J S Am Earth Sci 20:341–350

    Article  Google Scholar 

  • Dahlquist JA, Alasino P, Eby N, Galindo C, Casquetet C (2010) Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): Geochemical constraints and petrogenesis. Lithos 115:65–81

    Article  Google Scholar 

  • Dean HT, Arnold FA, Jay P, Knutson JW (1950) Studies on mass control of dental caries through fluoridation of the public water supply. Public Health Rep 65:1403–1408

    Article  Google Scholar 

  • Desbarats AJ (2009) On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Appl Geochem 24:915–927

    Article  Google Scholar 

  • Dorais MJ, Lira R, Chen Y, Tingey D (1997) Origin of biotite–apatite-rich enclaves, Achala batholith, Argentina. Contrib Min Petrol 130:31–46

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26(1–2):115–134

    Article  Google Scholar 

  • Faure G (1991) Principles and applications of inorganic geochemistry. Maxwell Macmillan International Editions, New York, p 600

    Google Scholar 

  • Fejeskov O, Baelum V, Manji FM (1988) Dental fluorosis: a handbook for health workers. Munsksgaard, Copenhagen, pp 40–42

  • Fiorentino CE, Paoloni JD, Sequeira ME, Arosteguy P (2007) The presence of vanadium in groundwater of southeastern extreme the pampean region Argentina: Relationship with other chemical elements. J Contam Hydrol 93(1–4):122–129

    Article  Google Scholar 

  • García MG, Lecomte KL, Martínez JO, Formica SM, Depetris PJ (2006) Flúor en aguas de ríos de las sierras de Córdoba, Argentina. I Congreso Internacional sobre gestión y tratamiento integral del agua. Córdoba, pp 120–127

  • Genxu W, Guodong C (2001) Fluoride distribution in water and governing factors of environment in arid north-west China. J Arid Environ 49:601–614

    Article  Google Scholar 

  • Gómez ML, Blarasin MT, Martínez DE (2009) Arsenic and fluoride in a loess aquifer in the central area of Argentina. Environ Geol 57(1):143–155

    Article  Google Scholar 

  • Handa BK (1975) Geochemistry and genesis of fluoride-containing ground waters in India. Ground Water 13:275–281

    Article  Google Scholar 

  • Harrison PTC (2005) Fluoride in water: a UK perspective. J Fluorine Chem 126:1448–1456

    Article  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (2000) Fluoride adsorption on goethite in relation to different types of surface sites. J Colloid Interf Sci 225(1):94–104

    Article  Google Scholar 

  • Höckenreiner M, Söllner F, Miller H (2003) Dating the TIPA shear zone: an early Devonian terrane boundary between the Famatinian and Pampean systems (NW Argentina). J S Am Earth Sci 16:45–66

    Article  Google Scholar 

  • Horowitz HS, Driscoll WS, Meyers RJ, Heifetz SB, Kingman A (1984) A new method for assessing the prevalence of dental fluorosis the tooth surface index of fluorosis. JADA 109:37–41

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Geol Soc Am Bull (reprinted) 56:275–370

    Article  Google Scholar 

  • Kirschbaum A, Martínez E, Pettinari G, Herrero S (2005) Weathering profiles in granites, Sierra Norte (Córdoba, Argentina). J S Am Earth Sci 19:479–493

    Article  Google Scholar 

  • Kruse E, Ainsil J (2003) Fluoride variations in groundwater of an area in Buenos Aires Province, Argentina. Environ Geol 44(1):86–89

    Google Scholar 

  • Lecomte KL (2006) Control geomorfológico en la geoquímica de Ríos de Montaña, Sierras Pampeanas, provincia de Córdoba, República Argentina. Doctoral Thesis (unpublished). Facultad de Ciencias Exactas, Físicas y Naturales, UN Córdoba

  • Lecomte KL, García MG, Fórmica SM, Depetris PJ (2009) Influence of geomorphological variables on mountainous stream water chemistry (Sierras Pampeanas, Córdoba, Argentina). Geomorphology 110(3–4):195–202

    Article  Google Scholar 

  • Lyons P, Skirrow RG, Stuart-Smith PG (1997) Geology and Metallogeny of the Sierras Septentrionales de Córdoba. 1;250.000 map sheet, Province of Córdoba. Geoscientific mapping of The Sierras Pampeanas Argentine-Australia Cooperative Project. Servicio Geológico Minero Argentino. Anales 27:1–131

    Google Scholar 

  • Malmström M, Banwart S (1997) Biotite dissolution at 25°C: the pH dependence of dissolution rate and stoichiometry. Geochim Cosmochim Acta 61(14):2779–2799

    Article  Google Scholar 

  • Mann J, Mahmoud M, Ernest M, Sgan-Cohen H, Shosshan N, Gedalia I (1990) Fluorosis and dental caries in 6–8 year-old children in a 5 ppm fluoride area. Commun Dent Oral Epidemiol 18:77–79

    Article  Google Scholar 

  • Massabie AC (1982) Geología de los alrededores de Capilla del Monte y San Marcos, Provincia de Córdoba. Asociación Geológica Argentina, Revista. Tomo XXXVII, Nº2. Abril–Junio

  • Milsom KM, Woodward M, Haran D, Lennon Ma (1996) Enamel defects in the permanent dentition of 8- and 9- year-old children in fluoridated Cheshire, England. J Dent Res 75:1015–1018

    Article  Google Scholar 

  • Mutti D, Tourn S, Caccaglio O, Herrmann C, Geuna S, Di Marco A, González Chiozza S (2005) Evolución metalogenética de las Sierras Pampeanas de Córdoba y sur de Santiago del Estero: Ciclos famatiniano, gondwánico y ándico. Revista de la Asociación Geol Argentina 60(3):467–485

    Google Scholar 

  • Nagadu B, Koeberl C, Kurat G (2003) Petrography and geochemistry of the Singo granite, Uganda, and implications for its origin. J Afr Earth Sci 36:73–87

    Article  Google Scholar 

  • Nordstrom DK, Jenne EA (1977) Fluorite solubility equilibria in selected geothermal waters. Geochim Cosmochim Acta 41:177–188

    Google Scholar 

  • Omueti JAI, Jones RL (1977) Fluoride adsorption by Illinois soils. J Soil Sci 28:564–572

    Article  Google Scholar 

  • Oruc N (2008) Occurrence and problems of high fluoride waters in Turkey: an overview. Environ Geochem Health 30:315–323

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2). A computer program for speciation, bath reaction, one-dimensional transport and inverse geochemical calculations. Water Resources Investigations Report 99–4259. US Geological Survey, Denver

    Google Scholar 

  • Pastore F, Methol EJ (1953) Descripción geológica de la Hoja 19 i, Capilla del Monte. Dirección Nacional de Minería. Buenos Aires. Boletín 79

  • Pickering WF (1985) The mobility of soluble fluoride in soils. Environ Pollut Ser B Chem Phys 9(4):281–308

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Trans Am Geophys Union 25:914–923

    Google Scholar 

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo E, Saavedra J, Galindo C, Fanning CM (1998) The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana. Geological Society of London Special Publication 142, pp 181–217

    Google Scholar 

  • Saavedra J, Baldo E, Pankhurst RJ, Rapela CW, Murra J (1998) El granito Capilla del Monte (Sierras Pampeanas de Córdoba, Argentina): edad, geoquímica, génesis y especialización metalogénica. 10 Congreso Latinoamericano de Geología. Actas 2:372 (in Spanish)

    Google Scholar 

  • Scaillet B, Macdonald R (2004) Fluorite stability in silicic magmas. Contrib Min Petrol 147(3):319–329

    Article  Google Scholar 

  • Shitumbanuma V, Tembo F, Tembo JM, Chilala S, Van Ranst E (2006) Dental fluorosis associated with drinking water from hot springs in Choma district in southern province, Zambia. Environ Geochem Health 29:51–58

    Article  Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic Press, New York

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon 2: the influence of geology and weathering environment on the dissolved load. J Geophys Res 88(14):9671–9688

    Article  Google Scholar 

  • Strahler AN (1987) Quantitative geomorphology of drainage basins and channel networks. Section 4-II of handbooks of applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Tang Y, Guan X, Wang J, Gao N, McPhail MR, Chusuei CC (2009) Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions. J Hazard Mater 171(1–3):774–779

    Article  Google Scholar 

  • Taylor RP, Fallick AE (1997) The evolution of fluorine–rich felsic magmas: source dichotomy, magmatic convergence and the origins of Topaz granite. Terra Nova 9(3):105–108

    Article  Google Scholar 

  • Warren JJ, Levy SM, Kanellis MJ (2001) Prevalence of dental fluorosis in the primary dentition. J Public Health Dent 61:87–91

    Article  Google Scholar 

  • Warren CJ, Burgess W, García MG (2005) Hydrochemical associations and depth profiles of arsenic and fluoride in quaternary loess aquifers of northern Argentina. Mineral Mag 69(5):877–886

    Article  Google Scholar 

  • Weeks KJ, Milsom KM, Lennon MA (1993) Enamel defects in 4 to 5 year-old children in fluoridated parts of Cheshire, UK. Caries Res 27:317–320

    Article  Google Scholar 

  • WHO World Health Organization (1985) Guideline for the study of dietary intake of chemical contaminants, vol 87. Geneva, pp 20–22

  • WHO World Health Organization (2004) Guidelines for drinking—water quality, 3rd edn, vol 1, recommendations, Geneva

  • Xiaolin X, Zhenhua Z (1998) Partitioning of F between aqueous fluids and albite melt and its petrogenetic and metallogenetic significance. Chin J Geochem 17(4):303–310

    Article  Google Scholar 

  • Yadav JP, Lata S, Kataria SK, Kumar S (2009) Fluoride distribution in groundwater and survey of dental fluorosis among school children in the villages of the Jhajjar District of Haryana, India. Environ Geochem Health 31:431–438

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Argentina’s FONCYT, SECYT-UNC, and CONICET. M. Gabriela García, and Karina L. Lecomte are members of CICyT in Argentina′s CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, M.G., Lecomte, K.L., Stupar, Y. et al. Geochemistry and health aspects of F-rich mountainous streams and groundwaters from sierras Pampeanas de Cordoba, Argentina. Environ Earth Sci 65, 535–545 (2012). https://doi.org/10.1007/s12665-011-1006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1006-z

Keywords

Navigation