Skip to main content
Log in

Antioxidant Activity of Phenolics Compounds From Sugar Cane (Saccharum officinarum L.) Juice

  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Phenolic compounds in sugar cane (Saccharum officinarum L.) juice were identified and quantified by analytical high performance liquid chromatography and photodiode array detection, showing the predominance of flavones (apigenin, luteolin and tricin derivatives), among flavonoids, and of hydroxycinnamic, caffeic and sinapic acids, among phenolic acids, representing a total content of around 160 mg/L. A tricin derivative was present in the highest proportion (>10% of the total). The phenolic extract obtained from sugar cane juice showed a protective effect against in vivo MeHgCl intoxication and potent inhibition of ex vivo lipoperoxidation of rat brain homogenates, indicating a potential use for beneficial health effects and/or therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. FNP Consultoria & Comércio (2005) Agrianual 2005: Cana-de-açúcar, São Paulo.

  2. Noa M, Mendoza S, Mas R, Mendoza N (2002) Effect of D-003, a mixture of high molecular weight primary acids from sugar cane wax, on CL4C-induced liver acute injury in rats. Drugs Exp Clin Res 28(5): 177–183.

    CAS  Google Scholar 

  3. Molina V, Noa M, Arruzazabala L, Carbajal D, Mas R (2005) Effect of D-003, a mixture of very-long-chain aliphatic acids purified from sugarcane wax, on cerebral ischemia in Mongolian gerbils. J Med Food 8(4): 482–487.

    Article  CAS  Google Scholar 

  4. Paton NH, Duong M (1992) Sugar-cane phenolics and 1st expressed juice color .3. role of chlorogenic acid and flavonoids in enzymatic browning of cane juice. Intern Sugar J 94(1124): 170–176.

    CAS  Google Scholar 

  5. McGhie TK (1993) Analysis of sugarcane flavonoids by capillary zone electrophoresis. J Chromatrogr 634: 107–112.

    Article  CAS  Google Scholar 

  6. Rice-Evans C, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20: 933–956.

    Article  CAS  Google Scholar 

  7. Nakasone Y, Takara K, Wada K, Tanaka J, Yogi S (1996) Antioxidative compounds isolated from Kokuto, non-centrifuged cane sugar. Biosci Biotech Biochem 60: 1714–1716.

    Article  CAS  Google Scholar 

  8. Takara K, Matsui D, Wada K, Ichiba T, Nakasone Y (2002) New antioxidative phenolic glycosides from kokuto non-centrifuged cane sugar. Biosci Biotechnol Biochem 66(1): 29–35.

    Article  CAS  Google Scholar 

  9. Payet B, Cheong AS, Smadja J (2005) Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. J Agric Food Chem 53: 10074–10079.

    Article  CAS  Google Scholar 

  10. Andrade P, Ferreres F, Amaral MT (1997) Analysis of honey phenolic acids by HPLC, its application to honey botanical characterization. J Liq Chromatogr Relat Technol 20: 2281–2288.

    CAS  Google Scholar 

  11. Tsao R, Yang R, Xie S, Sockovie E, Khanizadeh S (2005) Which polyphenolic compounds contribute to the total antioxidant activities of apple?. J Agric Food Chem 53(12): 4989–4995.

    Article  CAS  Google Scholar 

  12. Arabbi PR, Genovese MI, Lajolo FM (2004) Flavonoids in vegetable foods commonly consumed in Brazil. J Agric Food Chem 52(5): 1124–1131.

    CAS  Google Scholar 

  13. CENPALAB (1992) Código Práctico para el Uso de los Animales de Laboratorio, Centro para la Producción de Animales de Laboratorio, La Habana, Cuba.

  14. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95: 331–358.

    Article  Google Scholar 

  15. Duarte-Almeida JM, Santos RJ, Genovese MI, Lajolo FM (2006). Evaluation of the antioxidant activity using the b-carotene/linoleic acid system and the DPPH scavenging method. Ciência e Tecnologia de Alimentos 26: 446–452.

    Article  CAS  Google Scholar 

  16. Marco GI (1968) Rapid method for evaluation of antioxidants. J Am Oil Chem Soc 45: 594–598.

    CAS  Google Scholar 

  17. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28: 25–30.

    CAS  Google Scholar 

  18. Genovese MI, Lajolo FM (2002) Isoflavones in soy based foods consumed in Brazil: levels, distribution and estimated intake. J Agric Food Chem 50(21): 5987–5993.

    Article  CAS  Google Scholar 

  19. Hollman PC, Katan MB (1999) Health effects and bioavailability of dietary flavonols. Free Rad Res Suppl:S75–80.

  20. Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8(3): 281–290.

    Article  CAS  Google Scholar 

  21. Nielsen SE, Young JF, Daneshvar D, Lauridsen ST, Knuthsen P, Sandström B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81: 447–455.

    CAS  Google Scholar 

  22. Jeyabal PV, Syed M.B, Venkataraman M, Sambandham JK, Sakthisekaran D (2005) Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog 44(1): 11–20.

    Article  CAS  Google Scholar 

  23. Fukumoto LR, Mazza G (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem 48(8): 3597–3604.

    Article  CAS  Google Scholar 

  24. Lee SK, Mbwambo ZH, Chung H, Luyengi L, Gamez EJ, Mehta RG, Kinghorn AD, Pezzuto JM. (1998) Evaluation of the antioxidant potential of natural products. Comb Chem High Throughput Screen 1(1): 35–46.

    CAS  Google Scholar 

  25. Cholbi MR, Paya M, Alcaraz MJ (1991) Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47(2): 195–199.

    Article  CAS  Google Scholar 

  26. Magos L (1982) Neurotoxicity, anorexia and the preferential choice of antidote in methylmercury intoxicated rats. Neurobehav Toxicol Teratol 4(6): 643–646.

    CAS  Google Scholar 

  27. Naganuma A, Miura N, Kaneko S, Mishina T, Hosoya S, Miyairi S, Furuchi, TS, Kuge S (2000) GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. FASEB J 14: 968–972.

    CAS  Google Scholar 

  28. Shanker G, Aschner M (2003) Methylmercury- induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Brain Res Mol Brain Res 110(1): 85–91.

    Article  CAS  Google Scholar 

  29. Yee S, Choi BH (1996) Oxidative stress in neurotoxic effects of methylmercury poisoning. Neurotoxicology 17: 17–26.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge CNPq (Conselho Nacional para o Desenvolvimento Científico e Tecnológico) and CYTED (Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo—CYTED XI. 19. Aplicación de los nuevos ingredientes funcionales em alimentación infantil y para adultos), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Inés Genovese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurício Duarte-Almeida, J., Novoa, A.V., Linares, A.F. et al. Antioxidant Activity of Phenolics Compounds From Sugar Cane (Saccharum officinarum L.) Juice. Plant Foods Hum Nutr 61, 187–192 (2006). https://doi.org/10.1007/s11130-006-0032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-006-0032-6

Key words:

Navigation